Нужна программа для построения карты локальной сети? выбирайте из 5 лучших бесплатных решений!

Содержание:

Пример построения сетевого графика

Несмотря на то, что описанный выше алгоритм может показаться сложным, на самом же деле построение сетевого графика задача несложная. Для того, чтобы убедиться в этом рассмотрим построение сетевого графика на простом примере ремонта детской комнаты.

Шаг 1. Определить основную цель проекта

Представьте, что сейчас лето, вашему сыну исполнилось 7 лет и в сентябре он идет в школу. Вы решил обновить его комнату к новому учебному году и сделать ее подходящей для школьника, т.е. должно появиться полноценной рабочее место, зонирование комнаты измениться, и т.д.

В этом случае целью нашего небольшого проекта будет —  сделать комнату пригодной и приятной для проживания мальчика, который пойдет в начальную школу.

Шаг 2. Выявить ограничения

Бюджет не более 100,000 руб., ремонтные работы можно вести только в рабочие дни с 10:00 до 18:00 с обязательным перерывом с 12:00 до 14:00. Итого получается — 6 рабочих часов в день.

Шаг 3. Определить состав работ

Немного поразмыслив мы накидали основные работы, которые надо сделать, а именно:

  • Нам нужен дизайн-проект новой комнаты;
  • Нам надо закупить материалы для ремонта;
  • Надо составить смету ремонта;
  • Надо выполнить сам ремонт;
  • И т.к. мы решили сделать небольшую перепланировку, то надо согласовать ее с ТСЖ.

Отобразим эти работы в виде блоков:

Рисунок 1. Состав работ

Шаг 4. Оценить длительность работ

Мы решили оценивать длительность работ в днях, т.к. до начала учебного года еще достаточно времени, то такая точность планирования нас вполне устраивает.

Рисунок 2. Длительность работ

Шаг 5. Определить последовательность работ

Теперь определим последовательность работ, мы будем использовать схему построения сетевого графика «сверху-вниз». Первая работа, которую необходимо выполнить — это работа «Разработать дизайн-проекта«. Затем мы оценим стоимость проекта, а параллельно начнем согласование с ТСЖ, т.к. эта задача занимает много времени. После того, как мы оценим проект и его согласуем, мы приступим к покупке всех необходимых материалов и уже затем начнем сам ремонт.

Рисунок 3. Последовательность работ

Укажем стрелками связи между работами.

Рисунок 4. Связи между работами

Шаг 7. Определить раннее начало и раннее окончание

Т.к. мы выбрали модель сетевого график «сверху-вниз», то начинаем его и просматривать сверху вниз, начиная с самой верхней работы, и далее по очереди двигаемся к самой нижней работе.

Напомним, что раннее начало последующей работы будет совпадать с ранним завершением предшествующей, а раннее окончание каждой из работ определяется как раннее начало плюс длительность работ Если предшествующих работ несколько, то ранним началом последующей работы будет наибольшее из значений раннего окончания одной из предшествующих работ.

Рисунок 5. Раннее начало и окончание работ

Шаг 8. Определить поздние начало и окончание

Для того, чтобы определить поздние начало и окончание просмотрим сетевой график в обратном направлении — снизу вверх. Позднее окончание работы будет совпадать с поздним началом последующей работы. Если последующих работ несколько, то поздним окончанием работы будет наименьшее из значений позднего начала последующих работ. Позднее начало каждой работы определяется как позднее окончание минус длительность работы.

Рисунок 6. Позднее начало и окончание работ

Шаг 9. Определить временной резерв

Вычислим временной резерв для каждой из работ. Он вычисляется как разница между поздним и ранним началом или поздним и ранним окончанием работы.

Рисунок 7. Временной резерв

Шаг 10. Выявить критический путь

Как мы уже знаем, критический путь — это цепочка работ, у которых резерв времени равен нулю. Выделим такие задачи на сетевом графике.

Рисунок 8. Критический путь

Задачи «Разработать дизайн-проект«, «Согласовать проект с ТСЖ» и «Закупить необходимые материалы«, «Провести ремонтные работы» составляю критический путь, а его длина составляет 19 дней. Это означает, что в текущем виде проект не может быть выполнен быстрее, чем за 19 дней. Если мы хотим сократить сроки проекта, то нам необходимо оптимизировать задачи, лежащие на критическом пути.

Например, мы можем начать ремонтные работы раньше получения согласования на перепланировку от ТСЖ, приняв на себя риски того, что согласование может быть не получено.

Просмотры:
69 389

Метод сетевого моделирования

Сетевое планирование и управление получило активное развитие с 50-х годов прошлого века сначала в США, затем в других развитых странах и в СССР. Такие методы сетевого планирования, как CPM, PERT позволили существенно поднять «планку» проектного управления в направлении оптимизации временных и содержательных параметров графиков работ. Это дало возможность разрабатывать расписания проектных задач на основе более эффективной методологии сетевого моделирования, вобравшей в себя весь лучший опыт (схема методов календарного планирования приведена ниже). Сетевая диаграмма имеет различные названия, среди них:

  • сетевой график;
  • сетевая модель;
  • сеть;
  • граф сети;
  • стрелочная диаграмма;
  • PERT-диаграмма, и т.д.

Визуально сетевая модель проекта представляет собой графическую схему последовательного комплекса работ и связей между ними. Стоит заметить, что система планирования и управления проектом целостно отображается в графической форме состава операций, их временных протяженностей и взаимосвязанных событий. Основой метода построения модели служит раздел математики, именуемый теорией графов, сформировавшийся в начале 50-х – конце 60-х годов.

Методы календарного планирования и управления проектам

В модели сетевого планирования и управления под графом понимается геометрическая фигура, включающая бесконечное или конечное множество точек и линий, соединяющих между собой эти линии. Граничные точки графа называют его вершинами, а ориентированные в направлениях соединяющие их точки – ребрами или дугами. Сетевая модель в свой состав включает именно ориентированные графы.

Вид ориентированного графа

Разберем другие основные понятия сетевой модели проекта.

Работа – часть производственного или проектного процесса, имеющая начало и окончание в форме количественно описываемого результата, требующая затрат времени и других ресурсов. Работа отражается на диаграмме в форме однонаправленной стрелочной линии. Формой работ мы можем считать операции, мероприятия и действия.

Событие – факт завершения работ, результат которых необходим и достаточен для начала реализации следующих операций

Вид события на модели отражается в форме кружков, ромбиков (вехи) или других фигур, внутри которых помещается идентификационный номер события.

Веха представляет собой работу с нулевой продолжительностью и обозначает важное, значимое событие в проекте (например, утверждение или подписание документа, акт окончания или начала проектного этапа и т.п.).

Ожидание – это процедура, которая не потребляет никаких ресурсов, кроме затрат времени. Отображается как линия со стрелкой на конце с отметкой длительности и указанием наименования ожидания.

Фиктивная работа или зависимость – вид технологической и организационной связи работ, не требует никаких усилий и ресурсов, в том числе затрат времени

На сетевой диаграмме показывается как пунктирная стрелка.

Метод сетевой модели номер два

Вторым методом сетевого планирования, по праву завоевавшим популярность среди проект-менеджеров, является диаграмма, называемая «вершина – работа». В англоязычной версии модель сокращенно обозначается как AoN (Activity on Node). Метод отличается большей простой и наглядностью, предлагает узлами модели делать не события, а работы. При этом длина прямоугольников, обозначающих операции, может указывать на их длительность во времени. Отношения предшествования между ними оформляются прямыми или фигурными стрелками.

Такую диаграмму сформировать значительно проще, чем AoA. Тем не менее, алгоритм работы над ней очень похож. События на диаграмме не размещаются, но они предполагаются в завершении каждой работы. Помимо прочего, событиям все-таки уготовано место на сетевом графике, но в форме особых фактов, именуемых вехами. Веха – это особенное значимое событие проекта, и не каждая операция должна ею завершаться. Поэтому диаграмма может быть разгружена от несущественных событий, но отражать важные, ключевые моменты проектной реализации.

Пример сетевой диаграммы метода «вершина – работа»

Если воспользоваться возможностью вариации длины прямоугольников работ, превращая их в ленты, размер которых соответствует длительности реализации, то сетевой график превращается в диаграмму Ганта. Диаграмма вида AoN при этом становится похожей на АоА. В методе AoN отпадает необходимость в изображении фиктивных работ, требуемых в модели «ребро – работа» для своеобразной «упаковки» событий. Благодаря этому лишние, искусственные сущности исключаются из поля зрения менеджера проекта. Вехи в этом отношении являются более интересным решением, располагаясь, как и все работы, в узлах сетевого графика.

Работы перестают выполнять двойную функцию связующих события элементов и непосредственного обозначения выполняемых операций. Для метода AoN не требуется нумерации, что дает PM мобильность для свободного маневрирования числом мероприятий. И в этом кроется еще одно удобство метода «вершина – работа». В сетевой диаграмме должны быть учтены возможности применения различных связей предшествования. Их количество не столь велико, как может показаться на первый взгляд. Оно связано с вариантом связи предшествования и с эффектом отставания или опережения в отношении к примененной типовой связи. Все это мы рассмотрим в отдельном материале, посвященном практике сетевого планирования и управления.

В настоящей статье мы рассмотрели методы сетевого планирования и управления. В современной проектной практике отдается предпочтение методу AoN как более доступному и наглядному. Это не означает, что метод АоА плох, многие специалисты, освоив его, с успехом применяют. Обе модели приводят к одному и тому же результату, но с двух взаимосвязанных сторон: работ и событий. Проект-менеджер должен понимать суть и уметь применять каждый из представленных инструментов. Это связано с тем, что задача сетевого планирования состоит в поиске наиболее экономичных, ясных решений построения событийной и временной последовательности в условиях ограничений.

Построение сетевых графиков.

Сетевой график — это последовательная схема, отражающая порядок выполнения работ проекта. Он позволит вам провести своего рода тестирование: продумать различные стратегические подходы, прежде чем начать работы.

Сетевой график включает три элемента.

• Событие — значительное происшествие в ходе выполнения проекта; иногда также называется узловым событием или вехой. Оно не имеет протяженности во времени и не потребляет ресурсов. Это мгновенная точка отсчета в вашем проекте (как указательный столб на дороге), которая характеризует начало или конец работы или группы работ. Примеры событий: «Черновик отчета утвержден» или «Начало проектирования».

В данном случае слово «событие» употребляется в непривычном для вас контексте. В обычной жизни «событием года» мы называем, например, торжественный прием по случаю избрания нового президента. Но в отличие от нашего термина, это событие не только имеет протяженность во времени, но и требует значительных ресурсов!

• Работа — действия, которые выполняются, чтобы перейти от одного события вашего проекта к другому. Она занимает время и потребляет ресурсы. Примеры описания работ: «Разработать формат отчета» или «Сформулировать требования к новому продукту».

• Продолжительность — действительное календарное время, требуемое на выполнение работы. Также называется периодом или временем работы. Продолжительность работы зависит от ее трудоемкости, количества исполнителей (с учетом их работоспособности), производительности используемого оборудования (например, вычислительная мощность компьютера) и доступности требуемых ресурсов.

Понимание, из чего складывается это время, поможет найти средства и пути его сокращения. Предположим, для тестирования нового программного продукта нужно 24 часа. Если один работник будет заниматься этим ежедневно по шесть часов, то понадобится четыре дня. Одновременное привлечение двух исполнителей не ускорит работу, но в две смены они сделают ее за два дня.

Единицы времени применяются для описания двух взаимосвязанных, но разных характеристик работы. Продолжительность работы — это время от начала до ее завершения, в то время как трудоемкость — это количество затраченных на ее выполнение человеко-часов.

Если четыре исполнителя выполнят данную работу за пять рабочих дней, то это ее продолжительность, а трудоемкость составит 20 человеко-дней. (Трудоемкость подробнее рассматривается в главе 5.).

Чистое время задержки также включается в продолжительность работы. Например, вы отправили отчет на утверждение шефу. Он пролежал в приемной четыре дня и семь часов, после чего шеф в течение часа просмотрел и подписал отчет. Продолжительность работы в данном случае будет пять дней, хотя трудоемкость составила всего один час.

Независимо от сложности вашего проекта, его сетевой график будет содержать все те же три описанных элемента.

Минимизация числа исполнителей проекта при сохранении времени его выполнения

линейная диаграммакарта проекта

  • минимизировать количество одновременно занятых исполнителей;
  • выровнять потребность в трудовых ресурсах на протяжении всего срока выполнения проекта.
  • перемещение работ по оси времени возможно осуществлять только вправо (откладывая их начало);
  • работы критического пути трогать нельзя, т. к. это приведет к увеличению срока выполнения всего проекта;
  • работы, имеющие свободный резерв времени, можно спокойно перемещать на величину этого резерва;
  • перемещение работ, имеющих только полный резерв времени, требует аналогичного сдвига последующих работ;
  • передвигаемые работы на линейной диаграмме выделяют, отмечая заметным символом: звездочкой, штрихом, цветом и т.п.

калькулятора

Таблица 1

Работа (ij) Длительность t(ij), дн. Количество исполнителей
1,2 4 5
2,3 6 3
2,4 5 6
2,7 11 6
3,5 9 1
4,6 9 2
5,7 11 3
6,7 10 5
7,8 4 6

Рис. 1. Пример сетевого графика

Проведем более детальный анализ линейной диаграммы и карты проекта с целью оптимизации трудовых ресурсов: выравнивая потребность в них на протяжении всего проекта и минимизируя количество одновременно занятых исполнителей. График ежедневной потребности ресурса показывает, что минимальное число исполнителей не может быть меньше 6 человек, что определяется их потребностью для работ критического пути. А 15 исполнителей на участке 5-10 дни проекта является явно завышенным и подлежит коррекции в первую очередь.

Рис. 2. Линейная диаграмма и карта проекта до оптимизации

15 исполнителей заняты на работах 2,3; 2,4 и 2,7. Работу 2,3 трогать нельзя, т. к. это работа критического пути. Работа 2,4 имеет только полный резерв, но не имеет свободного резерва времени. Работа 2,7 имеет солидный свободный резерв времени и поэтому наиболее предпочтительна для оптимизации. Используем часть свободного резерва, переместив работу 2,7 (5-15 дни) на 5 дней (ее новый срок 10-20 дни). Тем самым максимально необходимое число исполнителей уменьшилось до 9 человек, т.е. задачу минимизации трудовых ресурсов проекта можно принять завершенной.

Рис. 3. Линейная диаграмма и карта проекта после оптимизации
Далее решим задачу выравнивания потребности в ресурсах, анализируя интервалы времени, связанные с «провалами» карты проекта. С учетом перемещения работы 2,7 падения спроса на исполнителей в середине проекта (16-18 дни) уже не будет, но он останется ближе к концу проекта (29-30 дни). Чтобы сгладить график загрузки, переместим работу 6,7 (19-28 дни), имеющую свободный резерв времени, на 2 дня (новый срок 21-30 дни). Также для целей выравнивания потребности в трудовых ресурсах переместим работу 4,6 (10-18 дни) на 1 день (11-19 дни).
В итоге оптимизации приходим к линейной диаграмме и карте проекта, представленными на рис. 3. Из графика видно улучшение равномерности загрузки исполнителей: новая ежедневная потребность ресурса составляет от 5 до 9 человек в зависимости от этапа выполнения проекта, резких колебаний занятости нет. Длительность выполнения всего проекта при этом осталась неизменной (34 дня), т. е. необходимое условие оптимизации соблюдено.

Видеоинструкция

Алгоритм построения сетевого графика

Алгоритм построения сетевого графика по методу критического пути состоит из 10 следующих шагов.

Шаг 1. Определить основную цель проекта

Определить основную цель проекта – результат, который должен быть получен после успешного завершения проекта. Это необходимо для определения границ проекта и первоначальной оценки его сроков.

Шаг 2. Выявить ограничения

Выявить ограничения, влияющие отдельные работы проекта или весь сетевой график. Типовыми ограничениями являются доступность ресурсов, сроки или стоимость. Кроме этого, ограничения могут быть заданы законодательными требованиям.

Шаг 4. Оценить длительность работ

Оценить длительность каждой из работ и определить ресурсы, необходимые для ее успешного выполнения. Команда управления проектом должна договориться о том, какие единицы измерения использовать для оценки длительности работ (часы, дни или, например, месяцы), а также выработать требования к максимальной длительности одной работы. Все работы, превышающую эту длительность, должны быть декомпозированы.

Шаг 5. Определить последовательность работ

Определить последовательность работ. Определить работу, которая должна быть выполнена в первую очередь. В некоторых случаю таких работ может быть несколько и они будут выполняться параллельно. Эта работа должна быть самой левой на графе.

Определить работу, которая должны быть выполнена сразу же после первой. Далее определяется работа, которая должна начинаться сразу же после второй, и так далее, пока все работы не будут рассмотрены. Если работа начинается до завершения предыдущей, то предыдущую работу необходимо разделить на составляющие. Работы могут выполняться параллельно, но при условии, что связь работ точно определена.

Начало выполнения параллельных работ должно быть строго привязано к завершению предыдущих работ.

Шаг 6. Указать связи между работами

Указать связи между работами, обычно в виде стрелок, которые показывают последовательность выполнения работ. Направление стрелок устанавливается слева направо.

Шаг 7. Определить раннее начало и раннее окончание

Определить раннее начало и раннее окончание для каждой из работ. Для этого сетевой график просматривают слева направо начиная с первой работы (крайней левой) и далее по очереди двигаются к последней. Последующая работа не может быть начата до тех пор, пока не завершены все предшествующие ей работы. Раннее начало последующей работы будет совпадать с ранним завершением предшествующей.

Если предшествующих работ несколько, то ранним началом последующей работы будет наибольшее из значений раннего окончания одной из предшествующих работ. Раннее окончание каждой из работ определяется как раннее начало плюс длительность работ, оцененная на шаге 4.

Шаг 8. Определить поздние начало и окончание

Определить поздние начало и окончание для каждой из работ. Для этого сетевой график просматривают в обратном направлении — начинают с последней работы (самой правой) и далее по очереди двигаются к первой. Предшествующая работа должна быть завершена до того, как начнется каждая из последующих работ. Позднее окончание работы будет совпадать с поздним началом последующей работы. Если последующих работ несколько, то поздним окончанием работы будет наименьшее из значений позднего начала последующих работ. Позднее начало каждой работы определяется как позднее окончание минус длительность работы.

Шаг 9. Определить временной резерв

Определить временной резерв для каждой из работ. Резерв времени вычисляется как разница между поздним и ранним началом или поздним и ранним окончанием работы.

Шаг 10. Выявить критический путь

Критический путь — это цепочка работ, у которых резерв времени равен нулю. При оптимизации сетевого графика в первую очередь проводится оптимизация работ, лежащих на критическом пути.

Onlinecharts.ru

Онлайн-помощник Onlinecharts.ru строит не графики, а диаграммы практически всех существующих видов. В том числе:

  • Линейные.
  • Столбчатые.
  • Круговые.
  • С областями.
  • Радиальные.
  • XY-графики.
  • Пузырьковые.
  • Точечные.
  • Полярные бульки.
  • Пирамиды.
  • Спидометры.
  • Столбчато-линейные.

Пользоваться ресурсом очень просто. Внешний вид диаграммы (цвет фона, сетки, линий, указателей, форма углов, шрифты, прозрачность, спецэффекты и т. д.) полностью определяется пользователем. Данные для построения можно ввести как вручную, так и импортировать из таблицы CSV-файла, хранимого на компьютере. Готовый результат доступен для скачивания на ПК в виде картинки, PDF-, CSV- или SVG-файлов, а также для сохранения онлайн на фотохостинге ImageShack.Us или в личном кабинете Onlinecharts.ru. Первый вариант могут использовать все, второй — только зарегистрированные.

Варианты связей и отношение предшествования

Сетевые методы планирования строятся по моделям, в которых проект представляется как целостная совокупность взаимосвязанных работ. Данные модели во многом формируются типом и видом связей между операциями реализации проекта. С позиции типа различаются жесткие, мягкие и ресурсные связи. Видовое различие взаимосвязанности операций основано на отношения предшествования. Рассмотрим основные типы связи.

Мягкие связи. Им соответствует особая, «дискреционная» логика, дающая «мягкую» основу для выбора операций к размещению на диаграмму, диктуемого технологией. В то время как технология длительный период развивалась на протяжении многих циклов, вырабатываются правила делового оборота, не требующие дополнительной фиксации и планирования. Это экономит время, место модели, стоимость и не требует дополнительного контроля со стороны PM. Поэтому менеджер проекта сам решает, нужна ему такая выделенная операция, или нет.
Жесткие связи. Данный вид связей основан на технологической логике. Они предписывают выполнение конкретных действий строго после других, что сообразно с процессуальной логикой. Например, наладку оборудования можно осуществлять только после его монтажа. Тестирование недочетов технологии допустимо проводить, если сдача ее в опытную эксплуатацию произошла и т.д

Иными словами, принятая технология (неважно, в какой сфере она реализуется) жестко навязывает последовательность мероприятий и событий проекта, что и обуславливает соответствующий тип связи.
Ресурсные связи. В условиях назначения на один ответственный ресурс нескольких задач возникает его перегруженность, что может привести к удорожанию проекта

За счет подведения под менее критичную задачу дополнительного ресурса этого можно избежать, и такие связи называются ресурсными.

В момент формирования расписания проекта сначала применяются жесткие, а затем – мягкие связи. Далее, по необходимости, некоторые мягкие связи подлежат сокращению. Благодаря этому может быть достигнуто некоторое сокращение общей длительности проекта. В условиях перегруженности некоторых ответственных ресурсов из-за параллельных работ допустимо разрешение возникших конфликтов введением ресурсных связей. Однако следует контролировать, чтобы новые связи не привели к значительным изменениям общего плана.

Сопряженные работы как некая последовательность проектной задачи связаны друг с другом. Назовем их операциями А и В. Введем понятие отношения предшествования, которое рассматривается как некое ограничение на сроки и общую продолжительность, так как операция В не может начаться до момента окончания операции А. Это означает, что В и А связаны отношением простого предшествования, при этом вовсе не обязательно, чтобы В начиналось одномоментно с окончанием А. Например, отделочные работы начинаются после возведения крыши дома, но это не означает, что выполняться они должны в тот же момент, когда наступит указанное событие.

Основные правила построения сетевого графика

Итак, основные правила построения сетевого графика сводятся к следующему:

Направление стрелок в сетевом графике следует принимать слева направо.
Форма графика должна быть простой, без лишних пересечений, большинство работ следует изображать горизонтальными линиями.
При выполнении параллельных работ, т.е

если одно событие служит началом двух работ или более, заканчивающихся другим событием, вводится зависимость и дополнительное событие, иначе разные работы будут иметь одинаковый код.
Если те или иные работы начинаются после частичного выполнения предшествующей, то эту работу следует разбить на части.
Если после окончания двух работ А и Б можно начать работу В, а начало работы, Г зависит только от окончания работы А и начало работы Д – от окончания работы Б, то на сетевом графике это изображается с помощью зависимостей.
При изображении поточных работ особое внимание уделяется правильной разбивке работ на захватки и выявлению взаимосвязи смежных работ.
Укрупнение сетей производится с соблюдением следующих правил:
группа работ на сетевом графике может изображаться как одна работа, если в этой группе имеется одно начальное и одно конечное событие;
укрупнять в одну работу следует только такие работы, которые закреплены за одним исполнителем (бригадой, участком и т.д.);
в укрупненную сеть нельзя вводить новые события, которых не было на более детальном графике до укрупнения;
наименование работ в укрупненном графике должно быть увязано с наименованием укрупняемых работ;
коды событий, которые сохраняются в укрупненном графике, должны быть такими же, как и в детальном графике.

При построении сетевого графика могут быть следующие ошибки. В сетевом графике не должно быть «тупиков», «хвостов» и «циклов»

«Тупик» — событие (кроме завершающего), из которого не выходит ни одна работа, «хвост» — событие (кроме исходного), в которое не входит ни одна работа, «цикл» — замкнутый контур, в котором работы возвращаются к тому событию, из которого они вышли.
Изображение поставок и других внешних работ осуществляется следующим образом. Работы, которые предшествуют выполнению тех или иных работ сетевого графика, но организационно решаются на другом уровне, называются внешними работами. К внешним работам можно отнести поступления технической документации, поставку материалов или оборудования, завоз строительных машин и т.д. Обычно такие работы графически выделяются, например, утолщенной стрелкой с двойным кружком.
Нумерация (кодирование) событий должна соответствовать последовательности работ во времени, т.е. предшествующим событиям присваиваются меньшие номера. Нумерацию событий рекомендуется производить только после окончательного построения сети и вести от исходного события, которому присваивается нулевой или первый номер. Последующее событие нельзя нумеровать, если не пронумеровано предшествующее ему событие. Кодирование можно вести горизонтальным или вертикальным методом. При горизонтальном методе события кодируют слева направо по прямым до первого пересечения работ. При вертикальном способе нумерацию начинают сверху вниз и снизу вверх с учетом условия: последующее событие получает номер после предыдущего.

Особенности

Сетевое планирование и управление позволяет определить примерную дату окончания проекта за счет анализа сроков выполнения его реализованных и нереализованных частей. В его основе лежит простое математическое моделирование комплексных мероприятий и точечных действий для решения какой-то одной конкретной задачи. Фактически планирование – это комплекс расчетных, организационных и графических методов, которые позволяют не только осуществлять качественную разработку проекта, но помогают перестроить его в режиме реального времени в зависимости от меняющихся внешних условий.

Оно позволяет равномерно распределить задачи с учетом:

  • ограниченности ресурсов (материальных и нематериальных);
  • регулярно обновляемой информации;
  • отслеживания сроков выполнения.

Такой способ минимизирует риски и исключит возможность появления дедлайна. В сетевом планировании широко развит системный подход. Нередко для запуска какого-либо проекта требуется работа сотрудников из разных подразделений предприятия (иногда даже привлекают специалистов на аутсорсе), поэтому только их слаженные действия в единой организационной системе позволит выполнить работу точно в срок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector