Модуль random на примерах

Содержание:

Время как источник случайности

Если вы запустите предыдущую программу несколько раз, вы обнаружите проблему: числа будут те же самые. Причина проста — в начале последовательности мы используем всегда одно и то же число, 18. Для последовательности это число является зерном (англ. seed), и чтобы последовательность менялась с каждым запуском, зерно должно быть случайным.

Простейший, но не самый лучший способ получения зерна: взять текущее календарное время в секундах. Для этой цели мы воспользуемся функцией std::time_t time(std::time_t* arg).

Теперь программа при каждом запуске будет выводить разные цепочки псевдослучайных чисел. При условии, что вы запускаете её не чаще одного раза в секунду.

Random_device – генератор истинно случайных чисел

Все генераторы псевдослучайных чисел являются детерминированными. То есть имеют определение. Или другими словами, получение случайных чисел основано на математических алгоритмах. Random_device же является недетерминированным. Он создает числа на основе стохастических (случайных с др.-греч.) процессов. Такими процессами могут быть изменения фазы или амплитуды колебаний тока, колебания молекулярных решеток, движения воздушных масс в атмосфере и т.д.

Очевидно, что не у каждого компьютера и не в каждой системе может быть встроена возможность получить случайное число на основе стохастического процесса. Поэтому прибегать к использованию random_device стоит только в случае необходимости. Его работа может отличаться от системы к системе, от компьютера к компьютеру, а может и вовсе быть недоступной. Поэтому при использовании генератора истинно случайных чисел нужно обязательно предусмотреть обработку ошибок.

Модуль random

Ниже приведена таблица, где описаны самые главные методы из подключаемого модуля, входящего в состав стандартных библиотек Python. В таблице приведены названия функций, а также доступный перечень параметров с небольшой характеристикой.

Метод Характеристика
random() возвращает число в диапазоне от 0 до 1
seed(a) настаивает генератор на новую последовательность a
randint(a, b) возвращает целое число в диапазоне от a и b
randrange(a, b, c) возвращает целое число в диапазоне от a до b с шагом c
uniform(a, b) возвращает вещественное число в диапазоне от a и b
shuffle(a) перемешивает значения в списке a
choice(a) возвращает случайный элемент из списка a
sample(a, b) возвращает последовательность длиной b из набора a
getstate() возвращает внутреннее состояние генератора
setstate(a) восстанавливает внутреннее состояние генератора a
getrandbits(a) возвращает a случайно сгенерированных бит
triangular(a, b, c) возвращает вещественное число от a до b с распределением c

Здесь хотелось бы описать функцию seed. Она как раз и применяется для задания инициализирующего числа псевдо случайной последовательности. При вызове seed без параметра, берется значение системного таймера. Эта функция вызывается в конструкторе класса Random.

В примерах мы рассмотрим, как применяются основные функции. А так же в конце рассмотрим как используется SystemRandom.

Функция rand().

Данная функция возвращает случайное целое число в диапазоне от нуля до RAND_MAX. RAND_MAX это специальная константа языка Си, в которой содержится максимальное целое число, которое может быть возвращено функцией rand().

Функция rand() определена в заголовочном файле stdlib.h. Поэтому, если хотите использовать rand в своей программе, не забудьте подключить этот заголовочный файл. Константа RAND_MAX тоже определена в этом файле. Вы можете найти этот файл у себя на компьютере и посмотреть её значение.

Давайте посмотрим на эту функцию в действии. Запустим следующий код:

Листинг 1.

#include <stdio.h>   // чтобы пользоваться функцией printf
#include <stdlib.h>  // чтобы пользоваться функцией rand
 
int main(void) {
/* генерируем пять случайных целых чисел */
  printf("%d\n", rand());
  printf("%d\n", rand());
  printf("%d\n", rand());
  printf("%d\n", rand());
  printf("%d\n", rand());
}

Должно получиться что-то вроде этого.

Рис.1 Пять случайных чисел, сгенерированных функцийе rand

Но нам бы хотелось получить числа от 1 до 53, а не всё подряд. Ниже описано несколько трюков, позволяющих наложить ограничения на функцию rand().

Ограничить случайные числа сверху.

Кто в школе ждал момента, когда ему пригодится математика, приготовьтесь. Этот момент наступил.
Чтобы ограничить сверху случайные числа, можно воспользоваться операцией получения остатка от деления, которую вы изучили в прошлом уроке.
Наверное вы знаете, что остаток от деления на числа K всегда меньше числа K. Например, при делении на 4 могут получиться остатки 0, 1, 2 и 3. Поэтому если вы хотите ограничить сверху случайные числа числом K, то просто возьмите остаток от деления на K. Вот так:

Листинг 2.

#include <stdio.h>
#include <stdlib.h>
 
int main(void) {
/* генерируем пять случайных целых чисел меньших 100 */
  printf("%d\n", rand()%100);
  printf("%d\n", rand()%100);
  printf("%d\n", rand()%100);
  printf("%d\n", rand()%100);
  printf("%d\n", rand()%100);
}

Рис.2 Пять случайных чисел меньше 100

Ограничить числа снизу.

Функция rand возвращает случайные числа из отрезка . А что если нам нужны только числа большие числа M (например, 1000)? Как быть? Всё просто. Просто прибавим к тому, что вернула функция rand, наше значение M. Тогда если функция вернёт , итоговый ответ будет M, если 2394, то итоговый ответ будет M + 2394. Этим действием мы как бы сдвигаем все числа на M единиц вперёд.

Задать границы функции rand сверху и снизу.

Например, получить числа от 80 до 100. Кажется, нужно просто объединить два способа, которые приведены выше.
Получим что-то вроде этого:

Листинг 3.

#include <stdio.h>
#include <stdlib.h>
 
int main(void) {
/* генерируем пять случайных целых чисел больших 80 и меньших 100 */
  printf("%d\n", 80 + rand()%100);
  printf("%d\n", 80 + rand()%100);
  printf("%d\n", 80 + rand()%100);
  printf("%d\n", 80 + rand()%100);
  printf("%d\n", 80 + rand()%100);
}

Попробуйте запустить эту программу. Удивлены?

Да, такой способ работать не будет. Давайте прокрутим эту программу руками, чтобы убедиться в том, что мы допустили ошибку. Допустим rand() вернула число 143. Остаток от деления на 100 равен 43. Дальше 80 + 43 = 123. Значит такой способ не работает. Подобная конструкция выдаст числа от 80 до 179.

Давайте разберём по действиям наше выражение.
rand()%100 может выдать числа от до 99 включительно. Т.е. из отрезка .

Операция + 80 сдвигает наш отрезок на 80 единиц вправо. Получаем .

Как видим, проблема у нас заключается в правой границе отрезка, она сдвинута вправо на 79 единиц. Это наше исходное число 80 минус 1. Давайте наведём порядок и сдвинем правую границу назад: 80 + rand()%(100 — 80 + 1). Тогда всё должно сработать как надо.

В общем случае если нам нужно получить числа из отрезка , то необходимо воспользоваться следующей конструкцией:A + rand()%(B-A+1).

Согласно этой формуле перепишем нашу последнюю программу:

Листинг 4.

#include <stdio.h>
#include <stdlib.h>
 
int main(void) {
/* генерируем пять случайных целых чисел из отрезка  */
  printf("%d\n", 80 + rand()%(100 - 80 + 1));
  printf("%d\n", 80 + rand()%(100 - 79));
  printf("%d\n", 80 + rand()%21);
  printf("%d\n", 80 + rand()%21);
  printf("%d\n", 80 + rand()%21);
}

Результат работы:

Рис.3 Случайные числа из диапазона

Ну вот, теперь вы можете решить исходную задачу урока. Сгенерировать число из отрезка .
Или не можете?

Но прежде ещё немного полезной информации. Запустите последнюю программу три раза подряд и записывайте себе случайные числа, которые она генерирует. Заметили?

Вопрос 7. Проиллюстрируйте закон больших чисел

Сложность: 2/3

Закон больших чисел (ЗБЧ) говорит, что при увеличении количества попыток случайная величина стремится к своему математическому ожиданию — всё усредняется. Подробнее об этом можно прочитать в нашей статье об основах математики для Data Science.

Код для иллюстрации ЗБЧ на примере честной монетки выглядит так:

Вначале мы импортировали уже знакомый нам модуль random и модуль matplotlib.plt — он нужен для рисования простых графиков. После этого определили переменные: общее количество бросков (total_flips), список из значений вероятностей (numerical_probability), количество выпавших орлов (H_count).

Теперь в цикле мы 5 000 раз «подбрасываем» монетку. Если выпадает орёл («H»), то делим текущее количество выпавших орлов на текущее количество бросков и добавляем итоговое значение в конец списка numerical_probability. В конце рисуем график.

Генерация случайного n-мерного массива целых чисел

Для генерации случайного n-мерного массива целых чисел используется :

Python

import numpy

random_integer_array = numpy.random.random_integers(1, 10, 5)
print(«1-мерный массив случайных целых чисел \n», random_integer_array,»\n»)

random_integer_array = numpy.random.random_integers(1, 10, size=(3, 2))
print(«2-мерный массив случайных целых чисел \n», random_integer_array)

1
2
3
4
5
6
7
8

importnumpy

random_integer_array=numpy.random.random_integers(1,10,5)

print(«1-мерный массив случайных целых чисел \n»,random_integer_array,»\n»)

random_integer_array=numpy.random.random_integers(1,10,size=(3,2))

print(«2-мерный массив случайных целых чисел \n»,random_integer_array)

Вывод:

Shell

1-мерный массив случайных целых чисел

2-мерный массив случайных целых чисел

]

1
2
3
4
5
6
7

1-мерныймассивслучайныхцелыхчисел

101421

2-мерныймассивслучайныхцелыхчисел

26

910

36

Приём №2: отбрасываем неподходящее значение

Если предыдущую программу запустить несколько раз, то рано или поздно у вас возникнет ситуация, когда одно и то же имя было выведено дважды. Что, если вам нужно уникальное значение, не выпадавшее прежде за время запуска программы?

Тогда используйте цикл, чтобы запрашивать случайные значения до тех пор, пока очередное значение не попадёт под ваши требования. Будьте аккуратны: если требования нереалистичные, вы получите бесконечный цикл!

Доработаем программу, добавив цикл while в функцию main. Для сохранения уже использованных имён воспользуемся структурой данных std::set из заголовка , представляющей динамическое множество.

Генерация случайных универсально уникальных ID

Модуль Python UUID предоставляет неизменяемые UUID объекты. UUID является универсально уникальным идентификатором.

У модуля есть функции для генерации всех версий UUID. Используя функцию , можно получить случайно сгенерированное уникальное ID длиной в 128 битов, которое к тому же является криптографически надежным.

Полученные уникальные ID используются для идентификации документов, пользователей, ресурсов и любой другой информации на компьютерных системах.

Пример использования в Python:

Python

import uuid

# получить уникальный UUID
safeId = uuid.uuid4()
print(«безопасный уникальный id «, safeId)

1
2
3
4
5
6

importuuid

 
 
# получить уникальный UUID

safeId=uuid.uuid4()

print(«безопасный уникальный id «,safeId)

Вывод:

Shell

безопасный уникальный id fb62463a-cd93-4f54-91ab-72a2e2697aff

1 безопасныйуникальныйidfb62463a-cd93-4f54-91ab-72a2e2697aff

Предыстория

Все началось с того, что я заметил, как в игре, в которой уровни генерировались процедурно, противники начали вести себя одинаково каждый раз при восстановлении старого уровня (вышел из игры, при повторном заходе, тебе предложили продолжить). Когда уровень начинался заново у противников была одна и та же комбинация поведений: сначала налево, потом стреляют, потом от игрока и опять стреляют.

После долгого исследования плагина и кода поведения мобов я нашел проблемное место. Это была одна безобидная строчка в проекте с больше чем 100 сборками и больше чем 60000 строк кода.

Эта строка выглядела так:

По факту эта строка просто позволяла загрузить ранее сгенерированный уровень. Но неявно, так же, она проставляла один единственный seed для всего класса

Равновероятные случайные числа

Функция генерирует любое случайное число от 0 до RAND_MAX с равной долей вероятности. Другими словами, у числа 100 есть такой же шанс выпасть, как и у числа 25876.

Чтобы доказать это, достаточно написать программу, подсчитывающую количество выпадений каждого из значений. Если выборка (количество «испытуемых») будет достаточно большой, а диапазон (разброс значений) маленьким, то мы должны увидеть, что процент выпадений того или иного значения приблизительно такой же как у других.

#include <stdio.h>
#include <time.h>
 
#define N 500
 
int main () {
    int i;
    int arr5 = {};
 
    srand(time(NULL));
 
    for (i=; i < N; i++)   
        switch (rand() % 5) {
            case  arr++; break;
            case 1 arr1++; break;
            case 2 arr2++; break;
            case 3 arr3++; break;
            case 4 arr4++; break;
    }
 
    for (i=; i < 5; i++) 
        printf("%d - %.2f%%\n", i, 
              ((float) arri  N) * 100);
}

В приведенной программе массив из пяти элементов сначала заполняется нулями. Случайные числа генерируются от 0 до 4 включительно. Если выпадает число 0, то увеличивается значение первого элемента массива, если число 1, то второго, и т.д. В конце на экран выводится процент выпадения каждого из чисел.

Спишите данную программу. Посмотрите на результат ее выполнения при различных значениях N: 10, 50, 500, 5000, 50000. Объясните увиденное.

Создание случайного пароля пользователя

Для того , чтобы создать случайный пароль пользователя , можно использовать символы , представленные в модуле. В частности для знаков пунктуации, для букв и для цифр:

Затем мы можем объединить все эти символы в имени с именем :

Удалите любой из них, чтобы создать пул символов с меньшим количеством элементов.

После этого, мы можем использовать для генерации пароля. Для пароля длиной 10:

Обратите внимание , что другие процедуры , сделанные немедленно доступны в модуле — такие , как , и т.д. — не подходит для криптографических целей

За кулисами, эти процедуры использовать Вихрь Мерсенна ПСЧ , который не удовлетворяет требованиям , предъявляемым к CSPRNG . Таким образом, в частности, вам не следует использовать какие-либо из них для создания паролей, которые вы планируете использовать. Всегда используйте экземпляр , как показано выше.

Начиная с Python 3.6 доступен модуль `секреты`, который предоставляет криптографически безопасную функциональность. Процитировав , чтобы сгенерировать * «десятибуквенный буквенно-цифровой пароль, содержащий как минимум один символ в нижнем регистре, как минимум один символ в верхнем регистре и как минимум три цифры», * вы можете: импортировать строку alphabet = string.ascii_letters + string.digits, а True: пароль = » .join (выбор (алфавит) для i в диапазоне (10)) if (любой (c.islower () для c в пароле) и любой (c. isupper () для c в пароле) и sum (c.isdigit () для c в пароле)> = 3): break

Получение вещественных случайных чисел

Ситуация с вещественными числами выглядит несколько по-иному. Во-первых, мы не можем получить остаток от деления, если делимое или делитель дробные числа. Во вторых при вычислении длины диапазона нельзя прибавлять единицу.

Поясним вторую причину. Допустим диапазон задан как . Он состоит не из определенного количества чисел (как в случае целых), а из неопределенного (можно сказать, бесконечного) числа значений, т.к. вещественные числа можно представлять с различной степенью точности. Позже выполняя округление все равно будет шанс получить максимальную границу диапазона, поэтому для вычисления длины диапазона достаточно из максимума вычесть минимум.

Если разделить случайное число, преобразованное к вещественному типу, которое выдала функция , на значение константы RAND_MAX, то получится вещественное случайное число от 0 до 1. Теперь, если это число умножить на длину диапазона, то получится число, лежащее в диапазоне от 0 до значения длины диапазона. Далее если прибавить к нему смещение к минимальной границе, то число благополучно впишется в требуемый диапазон. Таким образом формула для получения случайного вещественного числа выглядит так:

(float) rand()  RAND_MAX * (max - min) + min

Заполните массив случайными числами в диапазоне от 0.51 до 1.00. Выведите значение элементов массива на экран.

Вопрос 1. Что такое случайные числа?

Сложность: 1/3

Что нужно помнить: случайные числа — это математическое понятие, и их не следует путать с обыденными, произвольными числами. Случайное число в математике и программировании — это:

  • число из определённого диапазона,
  • у которого есть определённая вероятность выпадения.

Другими словами, существует закон или правило, которое называется «функцией распределения» или просто «распределением». И это самое распределение «раздаёт» каждому числу из диапазона определённую вероятность выпадения.

В качестве диапазона значений математикам и программистам привычнее всего использовать диапазон действительных чисел от 0 до 1, но это могут быть и целые числа от 1 до 6, как в игральном кубике, или от 100 до 1 000 000 — и так далее. Главное, что и распределение, и диапазон известны заранее, а само число нет.

Итого: случайные числа — это искусственно полученная последовательность чисел из определённого диапазона, которая подчиняется одному из законов распределения случайной величины.

Но ведь Unity заботится об объеме используемой ОЗУ

Нет, не заботится. Это пример плохого архитектурного решения, когда решили использовать ГПСЧ внутри реализации самого движка и одновременно предоставить доступ из C#. Объект загрузится и на протяжении жизни приложения будет всего один экземпляр в памяти. Это параллельно привносит новое неочевидное поведение и обязывает нас использовать один экземпляр Random на весь проект.

Невозможно заранее предсказать какое именно поведение потребуется пользователям. Но дать им право выбора надо.

Вот еще список потенциальных проблем, с которыми можно столкнуться:

  • Если внутри движка используется то, мы получим неожиданное поведение компонентов, предоставляемые Unity,

  • Скомпилированный в *.dll плагин устанавливает seed. И каждый раз перед вызовом придется проставлять seed. Решить это можно только через декомпиляцию (если финальная библиотека не обфусцирована).

Почему генератор создает одинаковые последовательности?

Когда программа запускается несколько раз, генератор всегда создает одну и ту же последовательность чисел, если его инициализация не меняется, то есть определение генератора происходит одинаковым образом от запуска к запуску программы. С одной стороны, такое самовоспроизведение чисел генератором полезно, например, при отладке. А с другой – является нежелательным и может создавать проблемы.

Соответственно, чтобы избежать повторения последовательности чисел, генератор должен инициализироваться разными значениями при каждом запуске программы. Как раз для этих целей можно использовать seed. Стандартным способом инициализации ГПСЧ является передача ему в качестве seed значения time(0) из заголовочного файла ctime. То есть генератор будет инициализироваться значением, равным количеству секунд, прошедших с момента 1 января 00 часов 00 минут 00 секунд, 1970 года по UTC.

Знакомство с новым ГПСЧ

Мы будем использовать генератор mersenne twister, а точнее mt19937. Основанный на свойствах простых чисел, он подходит для решения большинства задач. Несмотря на то, что степень его «случайности» весьма неплоха, он все-таки является ГПСЧ. Генерирует СЧ он достаточно быстро и хватить его должно с головой.

Определен он, как и все, что мы далее будем рассматривать, в хедере random и пространстве имен std. Является 32-битным генератором, имеет собрата mt19937_64, являющегося 64-битным.В конструкторе может инициализироваться величиной, от которой начинается генерация последовательности, либо специальным объектом seed_seq, являющимся зерном последовательности. Мы будем использовать первый вариант.

Пример: создание переменных std::mt19937

#include <random>  
#include <ctime>  
 int main() 

    std::mt19937 gen1, gen2(time());

Пример: использование метода seed

#include <random>  
#include <ctime>  int main() 

    std::mt19937 gen; 
    gen.seed(time());
}

Пример: генерация СЧ и вывод на экран

#include <iostream>  
#include <random> 
#include <ctime>

int main() 

    std::mt19937 gen; 
    gen.seed(time()); // try to comment this string 
    std::cout << «My number: » << gen() << std::endl; 
}

Вступление

Но мы ведь пишем на плюсах. В 11 стандарте С++ для программистов предоставляются обширные возможности для создания ГЧ и их использования. Надо отметить, что ничего нового не придумали, а добавили классы из библиотеки boost (boost/random). Так что для тех, кто не может пользоваться свежим компилятором, всегда есть вариант с использованием данной библиотеки.

В связи с чем возникла потребность новых ГСЧ? Если вы пишите проекты чуть более сложные, чем Hello World, то «случайности» ГСЧ (а правильнее ГПСЧ) srand вам попросту не хватит, несложно будет вычислить порядок следования последовательности, и вызов будет происходить в одно и то же время, давая одинаковый результат. Также, само по себе использование srand неудобно, все хорошо лишь при диапазоне от 0 до n, вдобавок n ограничен потолком short int на некоторых системах. А если надо брать нижнюю границу, отличную от 0, то появляются лишние числа, вычисления, влекущие ошибки, связанные с неверным подсчетом. Еще хуже дело обстоит с генерацией СЧ в виде числа с плавающей точкой. И рассмотренные ниже классы помогут нам в этом нелегком пути. Пусть вас не пугают длинные непривычные названия, попробовав новый функционал, вы будете даже простые задачки решать с его помощью.

Генерация случайных чисел в заданном диапазоне

Существует несколько способов генерации случайного (псевдослучайного) числа:

  1. Использование метода random() из класса математических функций Math , находящемся в пакете java.lang.
  1. Использование метода random() из класса Random , находящемся в пакете java.util.Random.
  1. Использование генератора случайных чисел класса SecureRandom , предназначенного для целей криптографии и, находящегося в пакете java.security. SecureRandom (здесь не рассматривается).

Рассмотрим методы генерации случайных чисел.

Класс Math. Метод random()

Метод random() класса Math возвращает псевдослучайное число типа double в диапазоне 0 ≤ Math.random()

Пример 1. Несколько случайных чисел

Случайное число № 1: 0.9161994380531232 Случайное число № 2: 0.24340742865928744 Случайное число № 3: 0.9783627451986034

Пример 2. Случайное число x в диапазоне a ≤ x ≤ b

Для генерации целого случайного числа x в заданном диапазоне a ≤ x ≤ b, обычно используется следующая зависимость:

x = a + (int)(Math.random()*((b — a) + 1)).

Получим случайное число x в диапазоне: 10 ≤ x ≤ 20 (a=10, b=20).

Результат.Случайное число x: 19

Класс Random. Метод random()

Это наиболее часто используемый класс для генерации псевдослучайный чисел с равномерной функцией распределения. Имеется метод nextGaussian() , который моделирует функцию нормального распределения.

Основными методами этого класса являются:

  • int nextInt( ) — возвращает следующее случайное значение ix типа int в диапазоне -2147483648 ≤ ix
  • int nextInt(int n) — возвращает следующее случайное значение ix типа int в диапазоне 0 ≤ ix
  • float nextFloat() — возвращает следующее случайное значение fx типа float в диапазоне 0.0 ≤ fx
  • double nextDouble() — возвращает следующее случайное значение dx типа double в диапазоне 0.0 ≤ dx
  • boolean nextBoolean() — возвращает следующее случайное значение типа boolean
Для получения случайных чисел необходимо:
  1. Подключить библиотеку случайных чисел. Пишем до определения класса. import java.util.Random;
  2. В классе создать объект rand случайных чисел Random rand = new Random();
  3. Далее использовать необходимые методы объекта rand.

Пример 1. Несколько случайных чисел разных типов.

Случайное число ix: 1438841988 Случайное число dx: 0.6120986135409442 Случайное число fx: 0.103119016 Случайное число bx: true

Пример 2. Случайное число x в диапазоне a ≤ x ≤ b.

Для генерации целого случайного числа x в заданном диапазоне a ≤ x ≤ b, обычно используется следующая зависимость:

тип int int x = a + rand.nextInt(b — a + 1).

тип double double y = a + rand.nextInt(b — a).

Случайное число x: 12 Случайное число dx: 17.505847041626733

Для типа double будет выведено случайное число в виде:

что неудобно. Для приемлемого представления используется форматный вывод, позволяющий выводить числа с заданной точностью.

Форматный вывод

Пакет java.io содержит класс PrintStream , который содержит методы printf и forma t, позволяющие выводить числа с заданной точностью. Рассмотрим метод format(). Синтаксис метода

System.out.format(String format, Object. args),

format — это строка — шаблон, согласно которому будет происходить форматирование, args — это список переменных, для вывода по заданному шаблону.

Строка — шаблон содержит обычный текст и специальные форматирующие символы. Эти символы начинаются со знака процента (%) и заканчиваются конвертором — символом, который определяет тип переменной для форматирования. Вот некоторые конверторы:

Источник

Генерирование целочисленных псевдослучайных значений

Для генерирования целочисленных псевдослучайных значений используется представленное выше выражение, в котором
произведение «приводится» к целочисленному значению. Например, попробуем получить псевдослучайное значение в диапазоне

Обратите внимание, что закрывающаяся скобка квадратная, т.е. 20 входит в диапазон

В этом случае к разности
между максимальным и минимальным значениями следует добавить 1, т.е. определить диапазон целочисленных значений [5,21),
где 21 не попадает в желаемый диапазон :

// после подстановки значений
int i = (int)Math.random() * (20 - 5 + 1) + 5;
// получаем
int i = (int)Math.random() * 16 + 5;

Почему в IT все числа неслучайные

Казалось бы, что мешает использовать в программах случайные числа? К сожалению, процессор на это не способен: его поведение строго детерминировано и не допускает никаких случайностей.

  • Для генерации по-настоящему случайных, ничем не связанных чисел операционной системе приходится использовать средства, недоступные обычным приложениям; такие случайные числа называются криптографически стойкими случайными числами
  • Генерация системой таких случайных чисел работает медленно, и при нехватке скорости система просто отдаёт приложениями псевдослучайные числа либо заставляет их ожидать, пока появится возможность вернуть случайное число

Игра в кости с использованием модуля random в Python

Далее представлен код простой игры в кости, которая поможет понять принцип работы функций модуля random. В игре два участника и два кубика.

  • Участники по очереди бросают кубики, предварительно встряхнув их;
  • Алгоритм высчитывает сумму значений кубиков каждого участника и добавляет полученный результат на доску с результатами;
  • Участник, у которого в результате большее количество очков, выигрывает.

Код программы для игры в кости Python:

Python

import random

PlayerOne = «Анна»
PlayerTwo = «Алекс»

AnnaScore = 0
AlexScore = 0

# У каждого кубика шесть возможных значений
diceOne =
diceTwo =

def playDiceGame():
«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

for i in range(5):
#оба кубика встряхиваются 5 раз
random.shuffle(diceOne)
random.shuffle(diceTwo)
firstNumber = random.choice(diceOne) # использование метода choice для выбора случайного значения
SecondNumber = random.choice(diceTwo)
return firstNumber + SecondNumber

print(«Игра в кости использует модуль random\n»)

#Давайте сыграем в кости три раза
for i in range(3):
# определим, кто будет бросать кости первым
AlexTossNumber = random.randint(1, 100) # генерация случайного числа от 1 до 100, включая 100
AnnaTossNumber = random.randrange(1, 101, 1) # генерация случайного числа от 1 до 100, не включая 101

if( AlexTossNumber > AnnaTossNumber):
print(«Алекс выиграл жеребьевку.»)
AlexScore = playDiceGame()
AnnaScore = playDiceGame()
else:
print(«Анна выиграла жеребьевку.»)
AnnaScore = playDiceGame()
AlexScore = playDiceGame()

if(AlexScore > AnnaScore):
print («Алекс выиграл игру в кости. Финальный счет Алекса:», AlexScore, «Финальный счет Анны:», AnnaScore, «\n»)
else:
print(«Анна выиграла игру в кости. Финальный счет Анны:», AnnaScore, «Финальный счет Алекса:», AlexScore, «\n»)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

importrandom

PlayerOne=»Анна»

PlayerTwo=»Алекс»

AnnaScore=

AlexScore=

 
# У каждого кубика шесть возможных значений

diceOne=1,2,3,4,5,6

diceTwo=1,2,3,4,5,6

defplayDiceGame()

«»»Оба участника, Анна и Алекс, бросают кубик, используя метод shuffle»»»

foriinrange(5)

#оба кубика встряхиваются 5 раз

random.shuffle(diceOne)

random.shuffle(diceTwo)

firstNumber=random.choice(diceOne)# использование метода choice для выбора случайного значения

SecondNumber=random.choice(diceTwo)

returnfirstNumber+SecondNumber

print(«Игра в кости использует модуль random\n»)

 
#Давайте сыграем в кости три раза

foriinrange(3)

# определим, кто будет бросать кости первым

AlexTossNumber=random.randint(1,100)# генерация случайного числа от 1 до 100, включая 100

AnnaTossNumber=random.randrange(1,101,1)# генерация случайного числа от 1 до 100, не включая 101

if(AlexTossNumber>AnnaTossNumber)

print(«Алекс выиграл жеребьевку.»)

AlexScore=playDiceGame()

AnnaScore=playDiceGame()

else

print(«Анна выиграла жеребьевку.»)

AnnaScore=playDiceGame()

AlexScore=playDiceGame()

if(AlexScore>AnnaScore)

print(«Алекс выиграл игру в кости. Финальный счет Алекса:»,AlexScore,»Финальный счет Анны:»,AnnaScore,»\n»)

else

print(«Анна выиграла игру в кости. Финальный счет Анны:»,AnnaScore,»Финальный счет Алекса:»,AlexScore,»\n»)

Вывод:

Shell

Игра в кости использует модуль random

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 5 Финальный счет Алекса: 2

Анна выиграла жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 2

Алекс выиграл жеребьевку.
Анна выиграла игру в кости. Финальный счет Анны: 10 Финальный счет Алекса: 8

1
2
3
4
5
6
7
8
9
10

Игравкостииспользуетмодульrandom

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны5ФинальныйсчетАлекса2

 
Аннавыигралажеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса2

 
Алексвыигралжеребьевку.

Аннавыигралаигрувкости.ФинальныйсчетАнны10ФинальныйсчетАлекса8

Вот и все. Оставить комментарии можете в секции ниже.

Генерация случайных распределений и псевдослучайных чисел в Python.

Модуль реализует генераторы псевдослучайных чисел для различных распределений.

Для целых чисел существует равномерный выбор из диапазона. Для последовательностей существует равномерный выбор случайного элемента, функция для генерации случайной перестановки списка на месте и функция для случайной выборки без замены.

На реальной линии есть функции для вычисления равномерного, нормального (гауссовского), логнормального, отрицательного экспоненциального, гамма и бета распределений. Для генерации распределений углов доступно распределение фон Мизеса.

Почти все функции модуля зависят от базовой функции , которая генерирует случайное число с плавающей точкой в ​​полуоткрытом диапазоне . Python использует Mersenne Twister в качестве генератора ядра. Он генерирует 53-битные значения точности и имеет период . Базовая реализация в C является быстрой и поточно-ориентированной. Mersenne Twister является одним из наиболее тщательно протестированных генераторов случайных чисел из существующих. Однако, будучи полностью детерминированным, он не подходит для всех целей и совершенно не подходит для криптографических целей.

Функции, предоставляемые этим модулем, на самом деле являются связанными методами скрытого экземпляра класса . Вы можете создать свои собственные экземпляры , чтобы получить генераторы, которые не делятся состоянием.

Класс также можно разделить на подклассы, если вы хотите использовать другой базовый генератор вашего собственного устройства: в этом случае переопределите методы , , и . При желании новый генератор может предоставить метод — это позволяет производить выборки в произвольно большом диапазоне.

Модуль также предоставляет класс , который использует системную функцию для генерации случайных чисел из источников, предоставляемых операционной системой.

Предупреждение.

Псевдослучайные генераторы этого модуля не должны использоваться в целях безопасности. В целях безопасности или криптографического использования смотрите «Модуль «.

Замечания по воспроизводимости последовательностей.

Иногда полезно иметь возможность воспроизвести последовательности, заданные генератором псевдослучайных чисел. При повторном использовании начального значения , одна и та же последовательность должна воспроизводиться от запуска к запуску, пока не запущено несколько потоков.

Большинство алгоритмов и функций модуля могут изменяться в разных версиях Python, но два аспекта гарантированно не изменятся:

  • Если будет добавлен новый метод, то обязательно будет предложена обратная совместимость.
  • Метод генератора будет продолжать создавать ту же последовательность, если совместимому методу будет дано то же самое начальное число .

Псевдослучайные числа

Иногда программист сталкивается с простыми, казалось бы, задачами: «отобрать случайный фильм для вечернего просмотра из определенного списка», «выбрать победителя лотереи», «перемешать список песен при тряске смартфона», «выбрать случайное число для шифрования сообщения», и каждый раз у него возникает очень закономерный вопрос: а как получить это самое случайное число?

Вообще-то, если вам нужно получить «настоящее случайное число», сделать это довольно-таки трудно. Вплоть до того, что в компьютер встраивают специальные математические сопроцессоры, которые умеют генерировать такие числа, с выполнением всех требований к «истинной случайности».

Поэтому программисты придумали свое решение — псевдослучайные числа. Псевдослучайные числа — это некая последовательность, числа в которой на первый взгляд кажутся случайными, но специалист при детальном анализе сможет найти в них определенные закономерности. Для шифрования секретных документов такие числа не подойдут, а для имитации бросания кубика в игре — вполне.

Есть много алгоритмов генерации последовательности псевдослучайных чисел и почти все из них генерируют следующее случайное число на основе предыдущего и еще каких-то вспомогательных чисел.

Например, данная программа выведет на экран неповторяющихся чисел:

Кстати, мы говорим не о псевдослучайных числах, а именно о последовательности таких чисел. Т.к. глядя на одно число невозможно понять, случайное оно или нет.

Случайное число ведь можно получить разными способами:

main.cpp

А теперь применение

#include <QCoreApplication>

#include "Random.hpp"

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);

    std::cout << "Random STD  - ";
    for (int i = 0; i < 15; ++i)
    {
        std::cout << Random::get(15, 43) << " ";
    }
    std::cout << std::endl;
    return a.exec();
}

Вывод

Random STD  - 38 29 36 38 21 32 33 39 31 15 33 16 36 38 35

В данном случае мы действительно получим случайный вывод чисел, а также числа не будут повторяться при каждом запуске программы. Что касается случайности, то я убедился в этом лично, когда для генерации уровня в игре применил данный класса Random. Каждый раз расстановка объектов в игре не повторялась. Чего очень сложно было достичь с использованием qrand .

Так что из ништяков C++11 можно выделить достаточно качественную генерацию псевдослучайных чисел.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector