Компиляция

Компиляция программ Linux

Первое что нам понадобиться — это исходники самой программы. В этом примере мы будем собирать самую последнюю версию vim. Это вполне нейтральная программа, достаточно простая и нужная всем, поэтому она отлично подойдет для примера.

Получение исходников

Первое что нам понадобиться, это исходные коды программы, которые можно взять на GitHub. Вы можете найти исходники для большинства программ Linux на GitHub. Кроме того, там же есть инструкции по сборке:

Давайте загрузим сами исходники нашей программы с помощью утилиты git:

Также, можно было скачать архив на сайте, и затем распаковать его в нужную папку, но так будет удобнее. Утилита создаст папку с именем программы, нам нужно сделать ее рабочей:

Настройка configure

Дальше нам нужно запустить скрипт, который проверит нашу программу на совместимость с системой и настроит параметры компиляции. Он называется configure и поставляется разработчиками программы вместе с исходниками. Весь процесс компиляции описан в файле Makefile, его будет создавать эта утилита.

Если configure нет в папке с исходниками, вы можете попытаться выполнить такие скрипты чтобы его создать:

Также для создания этого скрипта можно воспользоваться утилитой automake:

Утилита automake и другие из ее набора генерируют необходимые файлы на основе файла Mackefile.am. Этот файл обязательно есть в большинстве проектов.

После того как вы получили configure мы можем переходить к настройке. Одним из огромных плюсов ручной сборки программ есть то, что вы можете сами выбрать с какими опциями собирать программу, где она будет размещена и какие дополнительные возможности стоит включить. Все это настраивается с помощью configure. Полный набор опций можно посмотреть, выполнив:

Рассмотрим наиболее часто используемые, стандартные для всех программ опции:

  • —prefix=PREFIX — папка для установки программы, вместо /, например, может быть /usr/local/, тогда все файлы будут распространены не по основной файловой системе, а в /usr/local;
  • —bindir=DIR — папка для размещения исполняемых файлов, должна находится в PREFIX;
  • —libdir=DIR — папка для размещения и поиска библиотек по умолчанию, тоже в PREFIX;
  • —includedir=DIR — папка для размещения man страниц;
  • —disable-возможность — отключить указанную возможность;
  • —enable-возможность — включить возможность;
  • —with-библиотека — подобно enable активирует указанную библиотеку или заголовочный файл;
  • —without-библиотека — подобное disable отключает использование библиотеки.

Вы можете выполнить configure без опций, чтобы использовать значения по умолчанию, но также можете вручную указать нужные пути. В нашем случае ./configure есть, и мы можем его использовать:

Во время настройки утилита будет проверять, есть ли все необходимые библиотеки в системе, и если нет, вам придется их установить или отключить эту функцию, если это возможно. Например, может возникнуть такая ошибка: no terminal library found checking for tgetent()… configure: error: NOT FOUND!

В таком случае нам необходимо установить требуемую библиотеку. Например, программа предлагает ncurses, поэтому ставим:

Приставка lib всегда добавляется перед библиотеками, а -dev — означает, что нам нужна библиотека со всеми заголовочными файлами. После удовлетворения всех зависимостей настройка пройдет успешно.

Сборка программы

Когда настройка будет завершена и Makefile будет готов, вы сможете перейти непосредственно к сборке программы. На этом этапе выполняется непосредственно преобразование исходного кода в машинный. Утилита make на основе Makefile сделает все необходимые действия:

Дальше осталось установить саму программу, если вы использовали опцию prefix, чтобы не устанавливать программу в основную файловую систему, то можно применить стандартную опцию make:

После этого программа будет установлена в указанную вами папку, и вы сможете ее использовать. Но более правильный путь — создавать пакет для установки программы, это делается с помощью утилиты checkinstall, она позволяет создавать как deb, так и rpm пакеты, поэтому может использоваться не только в Ubuntu. Вместо make install выполните:

Затем просто установите получившийся пакет с помощью dpkg:

После этого сборка программы полностью завершена и установлена, так что вы можете переходить к полноценному использованию.

Если вы устанавливали программу с помощью make install, то удалить ее можно выполнив в той же папке обратную команду:

Команда удалит все файлы, которые были скопированы в файловую систему.

Обозначение понятия

Существуют следующие возможные способы применения слова компиляция:

  1. Аниме. В данной сфере компиляцией обозначают короткометражный или полнометражный фильм, который основан на соответствующем сериале, выполненном в классическом жанре японской анимации
  2. Литература. В этом виде искусства компиляцией называют создание сочинений на основании уже существующих произведений, без дополнительной обработки источников. Также в литературе данным термином обозначают любую работу, выполненную таким образом. Этот вид деятельности существенно отличается от плагиата ввиду того, что в некоторых типах произведений, таких как обзоры, очерки или монографии, авторам необходимо использовать большое количество источников, в том числе и отдельных вставок из них.
  3. Музыка. В данном виде искусства компиляцией называют сборник или же целый альбом, в который входят композиции, выполненные на одну и ту же тему. Это могут быть хит-парады, песни, определенного стиля или эпохи, а также сочинения некоего исполнителя различных лет написания. Отдельно в музыке этим термином именуется методика составления произведения из уже использующихся тем. Иногда компиляцией можно назвать то же, что и попурри.
  4. Программирование. Компиляцией в данной науке принято именовать осуществление трансляции программы, что написана на высокоуровневом языке, в программу, которая создана посредством языка более низкого уровня, но при этом имеющего схожий машинный код. Этот процесс осуществляется при помощи использования специального компилятора.

Вышеперечисленный перечень сфер применения понятия компиляция не является исчерпывающим.

Литература

Использование компиляции в литературе напрямую связано с сочинением работ, которые основаны на использовании большого количества источников. Таким способом создается информативный и действительно полезный материал, в котором можно найти большое количество данных по заданной теме.

Появление компиляции в литературе объясняется распространением учебно-популяризаторских и просветительских целей. В древние времена отсутствие такого механизма было объяснено сложностью понимания авторства и не имеющимся во всех государствах института авторского права.

Музыка

Основные типичные примеры компиляции в музыке заключаются в следующем:

  1. Сборники самых популярных композиций артиста или же группы. Для привлечения внимания к ним, чаще всего в них включают песню, ранее не выпускавшуюся в других альбомах.
  2. Другие сборники артиста или группы. Это могут быть редкие записи, песни, являющиеся саундтреками к фильмам, и т.д.
  3. Наборы дисков исполнителя. Они могут охватывать либо все творчество исполнителя, либо часть его альбомов.
  4. Тематические сборники нескольких исполнителей. Они могут быть посвящены любви, Новому году, Рождеству и т.д.
  5. Жанровые сборники. Чаще всего их создают исполнители, работающие в жанрах блюз, рок, джаз и др.
  6. Сборники хитов различных артистов. Чаще всего это касается самых популярных песен различных времен или же определенного года.
  7. Рекламные сборники. Эта форма продвижения является одной из наиболее успешных и популярных.
  8. Альбомы продюсеров. В большинстве случаев они помогают в работе большому количеству исполнителей.

Таким образом, компиляция в музыке обрела такое же распространение, как и в литературе.

Программирование

В программировании существуют следующие виды компиляции:

  • пакетная – использование нескольких модулей в одном и том же задании;
  • построчная – анализ и интерпретация каждой завершенной грамматической конструкции языка по очереди;
  • условная – транслируемый текст основывается на тех нормах, что заданы в первоначальной программе.

Трансляция программы – это неотъемлемая часть компиляции. Этот процесс включает в себя такие действия:

  • анализ лексики;
  • анализ синтаксиса;
  • анализ семантики;
  • оптимизация;
  • генерация нового кода.

Для осуществления компиляции в программировании используются различные типы программ. Они бывают векторизующими, гибкими, диалоговыми, инкрементальными, интерпретирующими, отладочными, резидентными, самокомпилирующими и универсальными.

Генерация кода

Генерация машинного кода

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен физическим процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой компилируется (собирается) машинно-ориентированная программа, называется целевой машиной.

Результат компиляции — исполнимый программный модуль — обладает максимально возможной производительностью, однако привязан к конкретной операционной системе (семейству или подсемейству ОС) и процессору (семейству процессоров) и не будет работать на других.

Для каждой целевой машины (IBM, Apple, Sun, Эльбрус и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов команд). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения — MMX, SSE и т. п.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера. (Пример: PureBasic, транслирующий бейсик-код в ассемблер FASM.) Это делается для упрощения части компилятора, отвечающей за генерацию кода, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции (в том числе ручной оптимизации) программистом.

Генерация байт-кода

Результатом работы компилятора может быть программа на специально созданном низкоуровневом языке двоично-кодовых команд, выполняемых виртуальной машиной. Такой язык называется псевдокодом или байт-кодом. Как правило, он не есть машинный код какого-либо компьютера и программы на нём могут исполняться на различных архитектурах, где имеется соответствующая виртуальная машина, но в некоторых случаях создаются аппаратные платформы, напрямую выполняющие псевдокод какого-либо языка. Например, псевдокод языка Java называется байт-кодом Java и выполняется в Java Virtual Machine, для его прямого исполнения была создана спецификация процессора picoJava. Для платформы .NET Framework псевдокод называется Common Intermediate Language (CIL), а среда исполнения — Common Language Runtime (CLR).

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без перекомляции.

Динамическая компиляция

Основная статья: Динамическая компиляция (англ.)

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция, когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и при повторных обращениях к коду исполняется уже скомпилированный вариант).

Наиболее популярной разновидностью динамической компиляции является JIT. Другой разновидностью является инкрементальная компиляция.

CIL-код также компилируется в код целевой машины JIT-компилятором, а библиотеки .NET Framework компилируются заранее.

Консольные проекты

Когда вы создаете новый проект, вас обычно спрашивают, проект какого типа вы хотите создать. Все проекты, которые мы создадим в этом руководстве, будут консольными. Консольный проект означает, что мы собираемся создавать программы, которые можно запускать из консоли Windows, Linux или Mac.

Ниже показан скриншот консоли Windows:

Рисунок 1 – Консоль Windows

По умолчанию консольные приложения не имеют графического пользовательского интерфейса (GUI), они выводят текст на консоль, считывают ввод с клавиатуры и компилируются в автономные исполняемые файлы. Они идеально подходят для изучения C++, поскольку сводят сложность к минимуму и обеспечивают работу в самых разных системах.

Не беспокойтесь, если вы никогда раньше не пользовались консолью или не знаете, как получить к ней доступ. Мы будем компилировать и запускать наши программы через наши IDE (которые при необходимости будут вызывать консоль).

Структура компилятора

Процесс компиляции состоит из следующих этапов:

  1. Трансляция программы — трансляция всех или только изменённых модулей исходной программы.
  2. компоновка машинно-ориентированной программы.

В первом случае компилятор представляет собой пакет программ, включающий в себя трансляторы с разных языков программирования и компоновщики. Такой компилятор может компилировать программу, разные части исходно текста которой написаны на разных языках программирования. Нередко такие компиляторы управляются встроенным интерпретатором того или иного командного языка. Яркий пример таких компиляторов — имеющийся во всех UNIX-системах (в частности в Linux) компилятор make.

Во втором случае компилятор де-факто выполняет только трансляцию и далее вызывает компоновщик как внешнюю подпрограмму, который и компонует машинно-ориентированную программу. Этот факт нередко служит поводом считать компилятор разновидностью транслятора, что естественно неверно, — все современные компиляторы такого типа поддерживают организацию импорта программой процедуры (функции) из уже оттранслированого программного модуля, написанного на другом языке программирования. Так в программу на С/С++ можно импортировать функцию написанную например Pascal или Fortran. Аналогично и напротив написанная на С/С++ функция может быть импортирована в Pascal- или Fortran-программу соотвественно. Это как правило было бы невозможно без поддержки многими современными компиляторами организации обработки входных данных в процедуру (функций) в соответствии с соглашениями других языков программирования. Например современные компиляторы с языка Pascal помимо соглашения самого Pascal поддерживает организацию обработки процедурая/функцией входных в соответствии с соглашениями языка С/С++. (Чтобы на уровне машинного кода написанная на Pascal процедура/функция работала с входными параметрами в соответствии с соглашениями языка С/С++, — оператор объявления такой Pascal-процедуры/Pascal-функции должен содержать ключевое слово cdecl.) Примерами таких компиляторов являются компиляторы со всех без исключения языков программирования, используемые непосредственно.

Трансляция программы как неотъемлемая составляющая компиляции включает в себя:

  1. Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
  2. Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.
  3. Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
  4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.
  5. Генерация кода. Из промежуточного представления порождается код на целевом машинно-ориентированном языке.

Примечания

  1. ГОСТ 19781-83 // Вычислительная техника. Терминология: Справочное пособие. Выпуск 1 / Рецензент канд. техн. наук Ю. П. Селиванов. — М.: Издательство стандартов, 1989. — 168 с. — 55 000 экз. — ISBN 5-7050-0155-X.; см. также ГОСТ 19781-90
  2. Першиков В. И., Савинков В. М. Толковый словарь по информатике / Рецензенты: канд. физ.-мат. наук А. С. Марков и д-р физ.-мат. наук И. В. Поттосин. — М.: Финансы и статистика, 1991. — 543 с. — 50 000 экз. — ISBN 5-279-00367-0.
  3. ↑ СТ ИСО 2382/7-77 // Вычислительная техника. Терминология. Указ. соч.
  4. Борковский А. Б. Англо-русский словарь по программированию и информатике (с толкованиями). — М.: Русский язык, 1990. — 335 с. — 50 050 (доп,) экз. — ISBN 5-200-01169-3.
  5. Толковый словарь по вычислительным системам = Dictionary of Computing / Под ред. В. Иллингуорта и др.: Пер. с англ. А. К. Белоцкого и др.; Под ред. Е. К. Масловского. — М.: Машиностроение, 1990. — 560 с. — 70 000 (доп,) экз. — ISBN 5-217-00617-X (СССР), ISBN 0-19-853913-4 (Великобритания).
  6. Н. А. Криницкий, Г. А. Миронов, Г. Д. Фролов. Программирование / Под ред. М. Р. Шура-Бура. — М.: Государственное издательство физико-математической литературы, 1963.

Создание проекта в Code::Blocks

Чтобы создать новый проект, перейдите в меню File (Файл) → New (Новый) → Project (Проект). Появится диалоговое окно, которое выглядит следующим образом:

Рисунок 10 – Code::Blocks. Диалоговое окно создания проекта

Выберите Console application (консольное приложение) и нажмите кнопку Go (перейти/создать).

Если вы видите диалоговое окно мастера консольного приложения, нажмите Next (далее), убедитесь, что выбран C++, и снова нажмите Next.

Теперь вам будет предложено назвать ваш проект. Назовите проект HelloWorld. Вы можете сохранить его где угодно. В Windows мы рекомендуем сохранить его в подкаталоге диска C, например C:\CBProjects.

Рисунок 11 – Code::Blocks. Диалогове окно сохранения проекта

Вы можете увидеть другое диалоговое окно с вопросом, какие конфигурации вы хотите включить. Значения по умолчанию здесь подойдут, поэтому выберите Finish.

Теперь ваш новый проект создан.

В левой части экрана вы должны увидеть окно Management (управление) с выбранной вкладкой Projects (проекты). Внутри этого окна вы увидите папку Workspace с вашим проектом HelloWorld внутри:

Рисунок 12 – Code::Blocks. Workspace

Внутри проекта HelloWorld разверните папку Sources (исходники) и дважды щелкните на «main.cpp». Вы увидите, что для вас уже написана программа hello world!

Замените ее следующим кодом:

Чтобы собрать проект, нажмите Ctrl + F9 или перейдите в меню Build (Сборка) → Build (Сборка). Если всё пойдет хорошо, вы должны увидеть следующее в окне журнала сборки:

Это означает, что компиляция прошла успешно!

Чтобы запустить скомпилированную программу, нажмите Ctrl + F10 или перейдите в меню Build (Сборка) → Run (Запуск). Вы увидите что-то похожее на следующий скриншот:

Рисунок 13 – Запуск программы

Это результат выполнения вашей программы!

Для пользователей Linux

Пользователям Linux до компиляции в Code::Blocks может потребоваться установить дополнительные пакеты. Дополнительные сведения смотрите в инструкциях по установке Code::Blocks в уроке «0.6 – Интегрированная среда разработки (IDE)».

Структура компилятора

Процесс компиляции состоит из следующих этапов:

  1. Трансляция программы — трансляция всех или только изменённых модулей исходной программы.
  2. Компоновка машинно-ориентированной программы.

Структурные реализации компилятора могут быть следующими:

  1. И транслятор, и компоновщик могут целиком входить в состав компилятора как исполняемые программы.
  2. Компилятор сам выполняет лишь трансляцию компилируемой программы, компоновка же программы выполняется вызываемой компилятором отдельной программой-компоновщиком. Практически все современные компиляторы построены по такой схеме.
  3. Пакет программ, включающий в себя трансляторы с разных языков программирования и компоновщики.

По первой схеме строились самые первые компиляторы, — для современных компиляторов такая схема построения нехарактерна.

По второй схеме построены все без исключения компиляторы с языков высокого уровня. Любой такой компилятор сам выполняет только трансляцию и далее вызывает компоновщик как внешнюю подпрограмму, который и компонует машинно-ориентированную программу. Такая схема построения легко позволяет компилятору работать и в режиме транслятора с соответствующего языка программирования. Этот обстоятельство нередко служит поводом считать компилятор разновидностью транслятора, что естественно неверно, — все современные компиляторы такого типа все же выполняют компоновку, пусть и силами вызываемого компилятором внешнего компоновщика, тогда как транслятор сам никогда не выполняет вызов внешнего компоновщика. Но это же обстоятельство позволяет компилятору с одного языка программирования на фазе компоновки включать в программу написанную на одном языке программирования функции-подпрограммы из уже оттранслированных соответствующим транслятором/компилятором, написанные на ином языке программирования. Так в программу на C/C++ можно вставлять функции написанные например на Pascal или Fortran. Аналогично и напротив написанная на C/C++ функции могут быть вставлены в Pascal- или Fortran-программу соответственно. Это было бы невозможно без поддержки многими современными компиляторами генерации кода вызова процедур (функций) в соответствии с соглашениями иных языков программирования. Например современные компиляторы с языка Pascal помимо организации вызова процедур/функций в стандарте самого Pascal поддерживают организацию вызова процедурой/функцией в соответствии с соглашениями языка C/C++. (Например чтобы на уровне машинного кода написанная на Pascal процедура/функция работала с входными параметрами в соответствии с соглашениями языка C/C++, — оператор объявления такой Pascal-процедуры/Pascal-функции должен содержать ключевое слово cdecl.)

Наконец по третьей схеме построены компиляторы, представляющие собой целые системы, включающие в себя трансляторы с разных языков программирования и компоновщики. Также любой такой компилятор может использовать в качестве транслятора любой способный работать в режиме транслятора компилятор с конкретного языка высокого уровня. Естественно такой компилятор может компилировать программу, разные части исходного текста которой написаны на разных языках программирования. Нередко такие компиляторы управляются встроенным интерпретатором того или иного командного языка. Яркий пример таких компиляторов — имеющийся во всех UNIX-системах (в частности в Linux) компилятор make.

Трансляция программы как неотъемлемая составляющая компиляции включает в себя:

  1. Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
  2. Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в древо разбора.
  3. Семантический анализ. На этой фазе древо разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их объявлениям, типам данных, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным древом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
  4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.
  5. Генерация кода. Из промежуточного представления порождается код на целевом машинно-ориентированном языке.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector