Лучшие программы для разгона пк и ноутбука

Комплектация Kingston HyperX Fury

Комплектация планок оперативной памяти от Kingston довольно скромная и не содержит ничего лишнего. Пластиковый кейс надежно защищает модули от внешних повреждений, которые могут возникнуть при транспортировке. Открыв коробку, можно увидеть помимо планок инструкцию по эксплуатации и наклейку от производителя. В качестве приятного бонуса компания предоставляет пожизненную гарантию на ремонт оперативной памяти, но только в случае покупки в комплекте.

Для лучшего охлаждения модули оснащены защитным корпусом с радиатором. Охлаждение при разгоне играет важную роль, так как повышается энергопотребление и растет тепловыделение.

На задней стороне есть наклейка с данными HX424C15FBK432, которая расшифровывается следующим образом:

  • HX — модель оперативной памяти HyperX;
  • 4 — принадлежность к стандарту DDR4;
  • 24 — определение рабочей частоты 2400 мегагерц;
  • C — данная маркировка указывает на то, что оперативная память относится к настольному типу компьютеров;
  • 15 — такова задержка чтения данного модуля;
  • F — маркировка модели Fury;
  • B — обозначение цветового сегмента планки;
  • K4 — комплектация, в данном случае — четыре штуки;
  • 32 — общий объем оперативной памяти.

Для того чтобы упростить процедуру установки модулей оперативной памяти в материнскую плату, производитель обеспечил возможность автоматического подключения. Данный параметр особенно важен в том случае, если нет возможности самостоятельно настроить показатели работы оперативной памяти.

Описание процессора и процедура разгона

Процессоры с сокетом 2011 третьей ревизии обладают встроенным контроллером памяти, что не дает раскрыть процессорам данного поколения весь потенциал оперативной памяти, но это с лихвой компенсируется тем, что они предназначены для работы в четырехканальном режиме.

Начинать разгон оперативной памяти Kingston стоит с программы БИОСа

Для начала стоит обратить внимание на базовый генератор, где предстоит выставить число 125 мегагерц, а входное напряжение должно быть равным 1,475 вольта. Там, во вкладке Extreme Tweaker, есть раздел DRAM Timing Control, где выставляются параметры таймингов — 13-16-16-21-1Т

После выставления настроек можно проверить в программах, которые предназначены для диагностики системы. Таким образом, удалось обеспечить разгон оперативной памяти DDR4 HyperX Fury до трех гигагерц. Это самый лучший результат. Разгон оперативной памяти DDR4 с 2133 до 3000 мегагерц позволяет системе быстрее функционировать и отвечать на запросы.

Некоторые особенности работы памяти на 2011 сокете

  • Частота контроллера памяти привязана к частоте ядер, поэтому скорость чтения\записи у младших моделей будет несколько ниже, чем у старших.
  • Небольшая разница между чтением и записью на процессорах второго поколения — это нормально.
  • Как ни странно, некоторые процессоры второго поколения зачастую берут более низкую частоту памяти, чем аналогичные процессоры первого поколения. Например, E5 2620 v2 и E5 2630 v2 обычно не способны работать с памятью выше 1600 Мгц. E5 2650 v2 как правило не берет больше 1866 Мгц.

Для большинства конфигураций хорошим результатом будет работа памяти на частоте 1866 Мгц с задержками менее 70 ns. В четырехканале при этом достигается скорость ~50 Гб\с.

Взять частоту в 2133 Мгц — более сложная задача, доступная уже не каждому процессору и набору памяти.

Для систем, ограниченных порогом в 1600 Мгц, хорошим решением будет найти максимально низкие стабильные тайминги. Ну а оставаться на частоте в 1333 Мгц даже при низких таймингах смысла довольно мало, скорость памяти по современным меркам будет весьма посредственной.

Индивидуальный подход

Пользоваться специальными утилитами для разгона системы можно, но не нужно — их функционал хромает.

Когда дело доходит непосредственно до ковыряния в
многочисленных меню, становится понятно, что изменять тайминги куда проще, чем
частоту памяти. Это в видеокартах все элементарно: потянул в специальной
утилите ползунок вправо — получил нужную прибавку к частоте. С полноценными
DDR-модулями все намного сложнее.

Основные проблемы связаны с тем, что скорость работы
оперативки зависит сразу от двух параметров — опорной частоты (FSB, BCLK) и
множителя. Перемножая эти значения, мы получаем итоговую частоту ОЗУ. Однако
простое увеличение первого параметра почти наверняка приведет к непредвиденным результатам,
ведь это неизменно скажется на производительности других компонентов системы.
Можно, конечно, не трогать опорную частоту, но добиться впечатляющего разгона с
помощью одних лишь модификаций множителя в большинстве случаев невозможно.

На разных платформах изменение опорной частоты приводит к
разным последствиям. Кроме того, нередко ради повышения скорости работы памяти
требуется изменить рабочие параметры других исполнительных блоков системы.
Словом, к каждой платформе нужен свой подход, так что мы постараемся разобрать
основные нюансы для каждого случая. Рассматривать все возможные конфигурации
мы, разумеется, не станем — сосредоточимся на десктопных платформах,
появившихся в последние несколько лет. У всех них контроллер памяти
располагается в процессоре, так что можно сказать, что особенности разгона
зависят от того, какой именно кусок кремния является сердцем системы. Итак,
хит-парад самых актуальных на сегодняшний день процессоров…

Об интерфейсе HBM

HBM — это высокопроизводительный интерфейс оперативной памяти, разработку которого при поддержке Hynix в 2008 г. начала AMD. Массовое производство HBM-памяти началось на заводах Hynix в Ичхоне (Южная Корея) в 2015 г.

Первыми устройствами, оснащенными этой памятью, стали видеокарты AMD на базе чипов архитектуры Fuji, в частности R9 Fury X, R9 Fury и R9 Nano. Технология HBM схожа с конкурирующей разработкой компании Micron под названием Hybrid Memory Cube.

Благодаря особенностям архитектуры HBM обеспечивает высокую пропускную способность, а также низкий расход энергии при компактных размерах устройства, хотя и отличается высокой стоимостью.

В памяти HBM кристаллы DRAM расположены вертикально на крайне малом расстоянии друг от друга. Размещается эта конструкция непосредственно на чипе GPU или CPU. Средством соединения такой конструкции, напоминающей многослойный торт, с центральным или графическим процессором служит специальная кремниевая подложка или интерпозер. Несколько стеков («стопок») памяти HBM подключаются к ней вместе с процессором, и этот модуль соединяется со схемной платой.

Вторая версия HBM была стандартизирована в начале 2021 г. и чуть позднее Samsung начала производство памяти по данной технологии – новинка получила имя Flarebolt. В начале 2021 г. свет увидел второе поколение восьмигигабайтной HBM2, выпущенной Samsung под брендом Aquabolt. Память обеспечивала в 9,6 раза более высокую производительность по сравнению с тогдашней производительностью DRAM (GDDR5).

Для компьютера, который используется для выхода в интернет и для работы с офисными программами, вполне достаточно установленой оперативной памяти 1Гб. Для оцифровки видео, работы с графикой и для игр нужно иметь, как минимум 2 или 4Гб.

Из наиболее стабильно работающих модулей памяти можно выделить следующие бренды:

Samsung, Corsair, OCZ, Transcend, Kingston, Patriot.

Специалисты нашей компьютерной помощи помогут выявить неисправность оперативной памяти, момогут с выбором и произведут установку на дому за считанные минуты.

Соковыжималка

Популярная утилита CPU-Z отображает реальную частоту памяти, а не эффективную, и многих новичков это вгоняет в ступор.

С тем, как работает оперативная память, мы разобрались.
Теперь осталось понять, как добиться от нее большей производительности, — и вот
с этим дело не просто. Существует два разных способа разгона памяти. Первый
подразумевает повышение частоты модулей, второй — понижение таймингов. Другими словами:
можно либо увеличивать количество тактов в секунду, либо делать сами такты
более продуктивными. В идеале, конечно, следует использовать оба метода
одновременно, но улучшение одного параметра всегда ведет к ухудшению другого, и
подобрать оптимальный баланс нелегко. Нельзя сказать заранее, что окажется
полезнее вашей системе — высокочастотная память с ослабленными таймингами или
модули, функционирующие на более низкой частоте, но обладающие минимальными
задержками.

Если вы готовы драться за каждый лишний балл в каком-нибудь
PCMark, то мы рекомендуем перепробовать несколько различных соотношений частоты
и таймингов и выбрать тот, что дает наилучший результат конкретно для вашей
системы. В противном случае будет разумнее сначала увеличить тайминги, потом
найти частотный потолок для используемых модулей памяти, а затем попытаться
вновь снизить задержки — как показывает практика, такой подход чаще оказывается
выигрышным. При этом на протяжении всего пути не стоит сильно отклоняться от
базового соотношения таймингов: первые три задержки должны быть примерно
одинаковыми, а для четвертой желательно выставлять значение равное сумме этих
таймингов или чуть ниже.

При разгоне памяти приходится регулярно прибегать к помощи бенчмарков, которые помогают оценить стабильность работы.

При разгоне памяти нельзя обойтись без помощи тестов,
измеряющих производительность системы, — именно они позволят оценить, насколько
велик прирост быстродействия вследствие ваших манипуляций и есть ли он вообще. Может
показаться парадоксальным, но порою понижение таймингов или увеличение частоты
оперативки может негативно сказаться на скорости работы компьютера — случаются
такие сюрпризы нечасто, но отмахиваться от них не стоит. В общем, без
бенчмарков никуда. Какое ПО лучше всего использовать? Мы советуем джентльменский
набор из PCMark, Everest и WinRAR (встроенный тест), но
вообще список диагностических утилит для памяти обширен — выбирайте то, что
больше по душе. Кстати говоря, бенчмарки полезны еще и потому, что позволяют
проверить память на стабильность работы. А после того, как разгон будет
считаться завершенным, не помешает дополнительно помучить компьютер
стресс-тестами вроде OCCT и S&M, дабы окончательно убедиться
в стабильности системы.

Проводя эксперименты, не стоит забывать о повышении
напряжения, причем речь идет не только о самих модулях, но и о контроллере
памяти — нередко именно он мешает раскрыть весь потенциал разгоняемых плашек.
Ранее на платформах Intel этот важный элемент системы располагался в северном
мосту чипсета, однако с недавних пор он окончательно переселился в центральные
процессоры, поэтому на современных платформах увеличение напряжения на
контроллере негативно сказывается на температуре ЦП. Таким образом, иногда для
эффективного разгона памяти приходится дополнительно усиливать охлаждение
процессора, а не самих модулей. Предостережем: не повышайте напряжение на
контроллере более чем на четверть, это может привести к печальным последствиям.

Наконец, стоит заранее определиться, каким образом будет
осуществляться разгон. Можно либо воспользоваться специальной утилитой, либо
изменять необходимые параметры непосредственно в BIOS. Мы настоятельно
рекомендуем взять на вооружение второй вариант, поскольку ни одна программа не
в состоянии раскрыть все возможности, предоставляемые системной платой. Соответственно,
перед проведением опытов не помешает внимательно изучить инструкцию к материнке
— это позволит понять, что именно скрывается под тем или иным пунктом в BIOS.
Так уж сложилось, что каждый производитель стремится ввести в обиход свои
собственные обозначения, и даже такие, казалось бы, общепринятые термины, как
названия таймингов, могут варьироваться от платы к плате.

И еще: не стоит сразу впадать в панику, если на определенном
этапе разгона система вдруг напрочь откажется стартовать. Как правило, это означает
лишь, что материнская плата не может автоматически сбросить неприемлемые для
нее настройки BIOS. Встречается данная болезнь не так часто и лечится она
банальным выниманием батарейки из платы. А вот если это не поможет — тогда уже
можно и паниковать.

Зачем разгонять оперативную память

Значение имеет не только объем установленной на машине пользователя оперативной памяти, но и ее быстродействие. Увлечение частоты оперативной памяти позволяет улучшить ее производительность. Чем выше этот показатель, тем больше объем данных обрабатывается в единицу времени. Это сказывается и на общей производительности компьютера.

Грамотно выполненный разгон дает пользователю следующие преимущества:

  • требуется меньше времени для полной загрузки операционной системы;
  • возрастает скорость работы инсталлированных в систему приложений (по результатам тестов архивирование файлов архиватором WinRAR ускоряется до 40%);
  • увеличивается производительность требовательных к ресурсам игр за счет улучшения показателя частоты кадров (FPS).

Для чего используют разгон ОЗУ

Прежде чем приступать к разгону, стоит подумать, действительно ли это необходимо. В основном, этот тип деятельности проводится только для гейминга. Погоня за высокой частотой кадров заставляет не только покупать новое оборудование, но и настраивать текущее, чтобы получить максимальную производительность.

Однако разница будет видна только в некоторых случаях. Это, в основном, относится к интегрированным видеокартам, где оперативная память потребляется видеокартой, которой оснащены процессоры Ryzen. В этом случае ресурс ОЗУ влияет на эффективную работу всего чипа. Конечно, многое зависит и от самих игр. Некоторые из них, в основном, загружают видеокарту, другие, напротив, в большей степени используют вычислительную мощность процессора и оперативную память.

Принимая решение о разгоне, сначала стоит ознакомиться со всеми важнейшими параметрами RAM. Это позволит понять ее специфику, а также лучше подготовиться к самому разгону.

Что понадобится для разгона

Как и в случае с разгоном процессора, цель – увеличить тактовую частоту. Лучшие параметры обеспечат более высокую производительность, а также большую нагрузку. Поэтому ключевым условием является выбор правильного оборудования, которое позволит провести весь процесс безопасным и стабильным способом. Итак, что же нужно?

  1. Материнская плата – должна быть хорошего качества, а также обеспечивать достаточный источник питания и поддержку более высоких рабочих частот ОЗУ (стоит проверить это в спецификации платы).
  2. Кулеры в корпусе – будут отводить избыточное тепло.
  3. Обновленный BIOS и UEFI – возможно, производитель материнской платы предоставил новые функции или оптимизировал предыдущие, что упростит процесс разгона.
  4. Программа Memtest – проверка стабильности оперативной памяти после разгона. Конечно, можно использовать и другой диагностический софт.

Основные термины

Прежде чем приступить к разгону, стоит ознакомиться с используемыми терминами:

  1. Тактовая частота – это скорость чтения и записи данных контроллером. Это влияет на скорость выполнения вычислений процессором.
  2. CL (CAS Latency) – указывает время, необходимое для считывания данных контроллером памяти с момента отправки запроса. Чем ниже значение, тем лучше.
  3. RCD (RAS-CAS Delay) – это время, которое проходит с момента завершения выполнения команды CAS, до начала выполнения следующей RAS.
  4. RAS (Row Addres Strobe) – указывает время, необходимое для активации банка памяти до загрузки строки. Этот параметр имеет мало значения для производительности.
  5. RP (Ras Precharge) – время, необходимое для закрытия банка памяти.
  6. Вольтаж – память, предназначенная для разгона, потребляет больше электроэнергии. Питание имеет решающее значение для разгона.

Важно помнить, что CL и тактовая частота должны быть в равновесии – не стоит использовать высоко тактовую память с большими задержками, ведь ее потенциал не будет раскрыт

Оптимизация таймингов

Итак, тайминги оперативной памяти – какие лучше значения для них выставлять? Почти всегда оптимальные цифры определяются в ходе практических экспериментов. Работа ПК связана не только с качеством функционирования модулей ОЗУ, и далеко не только скоростью обмена данными между ними и процессором. Важны многие другие характеристики ПК (вплоть до таких нюансов, как система охлаждения компьютера). Поэтому практическая результативность изменения таймингов зависит от конкретной программно-аппаратной среды, в которой пользователь производит настройку модулей ОЗУ.

Общую закономерность мы уже назвали: чем ниже значения таймингов, тем выше скорость работы ПК. Но это, конечно, идеальный сценарий. В свою очередь, тайминги с пониженными значениями могут пригодиться при «разгоне» модулей материнской платы – искусственном завышении ее частоты.

Дело в том, что если придать микросхемам ОЗУ ускорение в ручном режиме, задействовав слишком большие коэффициенты, то компьютер может начать работать нестабильно. Вполне возможен сценарий, при котором настройки таймингов будут выставлены настолько некорректно, что ПК и вовсе не сможет загрузиться. Тогда, скорее всего, придется «обнулять» настройки BIOS аппаратным методом (с высокой вероятностью обращения в сервисный центр).

В свою очередь, более высокие значения для таймингов могут, несколько замедлив работу ПК (но не настолько, чтобы скорость функционирования была доведена до режима, предшествовавшего «разгону»), придать системе стабильности.

Некоторыми IT-экспертами подсчитано, что модули ОЗУ, обладающие CL в значении 3, обеспечивают примерно на 40 % меньшую задержку в обмене соответствующими сигналами, чем те, где CL равен 5. Разумеется, при условии, что тактовая частота и на том, и на другом одинаковая.

Как узнать тайминги оперативной памяти

На производительность модулей памяти влияет не только частота, но и тайминги. Многие пользователи при выборе ОЗУ игнорируют этот параметр, а напрасно. От значений таймингов также зависит, насколько стабильно будет функционировать система. Считается, что чем выше их значения, тем меньше вероятность сбоя, но при этом снижается и быстродействие.

Тайминги – это задержки времени, которые отмечаются между передачей определенной команды шины памяти и ее фактическим выполнением. Проще говоря, данная характеристика показывает, с какой скоростью передаются данные внутри модуля оперативной памяти.

Тайминги обычно указаны на наклейке на планке оперативной памяти в виде последовательности из 4 чисел, разделенных дефисом.  Они отображают следующие значения по порядку:

  1. CL (CAS Latency) – сколько времени прошло от передачи запроса к памяти, до того как она начала его обрабатывать;
  2. tRCD (RAS to CAS Delay) – продолжительность периода активации ряда (RAS) и колонки (CAS) в матрице хранения данных;
  3. tRP (RAS Precharge) – временной отрезок, начинающийся с команды деактивации одной строки и завершающийся активацией другой;
  4. tRAS (Active to Precharge Delay) – число циклов, которые нужно ждать перед тем, как следующий запрос к памяти может быть инициализирован.
  5. CR или CMD (Command Rate) — сколько циклов проходит от включения чипа памяти до того, как он сможет принимать команды. Часто его не указывают, и он равен 1 или 2 циклам (1T и 2Т соответственно).

Чтобы узнать значения таймингов, вовсе не понадобится снимать боковую панель с корпуса ПК или разбирать ноутбук. Необходимые сведения можно посмотреть, воспользовавшись одной из утилит для считывания информации об установленных в системе комплектующих. Для этой цели подойдет бесплатная программа CPU-Z. Для получения нужной информации достаточно перейти на вкладку «Memory» и ознакомиться с содержанием раздела «Timings».

Intel Sandy Bridge

Повышая рабочее напряжение, можно увеличить разгонный потенциал модулей, но бездумно задирать этот параметр не стоит — память может и перегореть.

Новейшие процессоры Intel, представленные
двухтысячной линейкой Core i3/i5/i7, придутся по душе
оверклокерам-новичкам. Матерые адепты разгона считают, что с приходом Sandy
Bridge разгонять систему стало слишком скучно. Все дело в том, что в этих
процессорах опорная частота (у Intel она зовется BCLK), от которой пляшут все
основные исполнительные блоки, практически не поддается изменению — стоит
отклонить ее на какие-то 6-7 МГц, и система начинает вести себя неадекватно.
Соответственно, старые добрые приемы в случае с Sandy Bridge не работают, поэтому
единственный способ разогнать оперативку (как, впрочем, и процессор) — увеличивать
соответствующий множитель. Благо контроллер памяти, встроенный в новые
процессоры, вышел довольно шустрым, и частота в 2133 МГц ему покоряется без
проблем. Поскольку трогать BCLK настоятельно не рекомендуется, итоговая опорная
частота памяти в любом случае должна быть кратна 266 МГц, то есть не любой
набор DDR3 удастся завести именно на той частоте, что заявлена его
производителем. Скажем, модули DDR3-2000, встретившись с новыми процессорами
Intel, будут работать как DDR3-1866.

Заметим, что одного лишь процессора Sandy Bridge для
эффективного разгона ОЗУ недостаточно — нужна еще и подходящая материнская
плата. Все дело в том, что Intel искусственно ограничила оверклокерские
возможности не только процессоров (множитель можно увеличить лишь у моделей с
индексом «К»), но и чипсетов. Так, младшие наборы логики память разгонять не
умеют, поэтому в системных платах на их основе даже самые скоростные модули
будут работать как DDR3-1333. А вот чипсет Intel P67 Express,
позиционирующийся как решение для энтузиастов, поддерживает режимы вплоть до
DDR3-2133, поэтому к выбору материнской платы под Sandy Bridge стоит подходить
со всей основательностью.

К бою готов

Чем лучше у вашей памяти радиаторы, тем
выше у нее разгонный потенциал.

Как определить, подходят ваши конкретные модули для разгона
или нет? Если плашки изначально не относятся к оверклокерскому классу (то есть
их частота не превышает рекомендованных создателями процессоров значений), то
отталкиваться стоит прежде всего от их производителя, рабочего напряжения и
системы охлаждения.

Про производителя, думаем, объяснять не стоит: именитые
компании используют проверенные чипы, возможности которых, как правило, не до
конца исчерпаны, а вот от китайского нонейма ожидать выдающегося разгонного
потенциала не стоит. Рабочее напряжение также позволяет определить, насколько
микросхемы близки к пределу своих возможностей: чем меньше вольт подается на
чипы по умолчанию, тем сильнее можно будет увеличить напряжение самостоятельно
и тем выше будет частотный потенциал. Ну а качественные радиаторы позволяют
эффективнее отводить тепло от чипов, что позволяет выжать из плашек чуть больше
производительности.

Влияние частоты видеопамяти

Как вы понимаете, каждая модель видеокарты имеет встроенную оперативную память. Другими словами это видеопамять. При этом она имеет аббревиатуру GDDR, что расшифровывается как «графическая удвоенная передача данных».

Такой принцип обозначения обеспечивает понимание того, что вы работаете не с оперативной, а  с видеопамятью. Она имеет более высокую частоту. Как следствие, за счёт этого гарантируется быстродействие графического чипа, а также работа с большим объёмом данных. Мощная видеокарта легко обрабатывает всю информацию и выводит её на экран.

Пропускная способность памяти

Первый важный момент касательно аспекта влияния затрагивает тактовую частоту видеопамяти. Именно она определяет то, какой будет пропускная способность (ПСП).

Между тем, высокое значение ПСП – это, в большинстве случаев, возможность получения достойных результатов в плане производительности, если идёт взаимодействие с графикой формата 3D.

Ширина шины памяти

Ширина шины памяти, а также её частота – это те параметры, которые имеют ещё большее значение. Так как именно они определяют то, насколько окажется эффективной та или иная тактовая частота видеопамяти.

Идея мысли, описанной выше, заключается в том, чтобы при выборе подходящей модели для своего ПК нужно обращать внимание на все параметры, включая ширину шины памяти. От этого будут зависеть дальнейшие результаты работы с требовательными программами и играми

Пример выглядит следующим образом. Если вы купите видеокарту, которая имеет 4 ГБ видеопамяти, вы можете подумать, что сделали выбор в пользу мощного модуля. Но это будет далеко не так в том случае, если при этом окажется, что у неё 64-битная шина.

Чтобы не столкнуться с неприятностями, нужно всего лишь тщательно подойти к вопросу выбора модели

Очень важно, чтобы ширины шины и частота видеопамяти были в балансе между собой

В современном стандарте GDDR5 имеется возможность сделать эффективную частоту памяти больше её реальной в 4 раза. Но вам не стоит думать о том, что лично вы будете постоянно выполнять все подсчёты и держать формулу у себя в голове.

На данный момент времени производители изначально указывают уже умноженную частоту памяти видеокарты. То есть, другими словами они пишут настоящий показатель.

Параметры битности шины

Если рассматривать возможные параметры, то это:

  • Ширина шины от 64 до 256 бит. Это стандартный вариант, который подойдёт обычным пользователям, не выполняющим глобальные вычисления в научной сфере.
  • Ширина в размере 352 бит. Такой вариант будет актуален в случае с самыми требовательными играми, которые существуют на данный момент.

Более детально озвучивая нужные параметры под те или иные потребности, можно выделить ряд ситуаций:

Работа в офисе, взаимодействие исключительно с документами и браузером. При таком формате нагрузка является минимальной. Как итог, модель с 64-битной шиной будет наиболее уместной.

Если вы хотите изредка играть в какие-то игры не самого нового образца, подойдут модели, где 128 или же 192-битная шина.

Имея цель осваивать самые свежие продукты на рынке, выбирайте видеокарту с шириной шины, величина которой составляет 256 бит.

Расчёт ПСП

Можно смоделировать ситуацию, при которой у вас есть две модели видеокарты. Первая имеет в комплекте память стандарта GDDR5. Эффективная тактовая частота составляет 1333 МГц (реальная частота – это результат её деления на 4), а ширина шины составляет 256 бит. Вторая модель включает в себя шину шириной 128 бит и эффективную частоту памяти 1600 МГц.

Если вы усвоили предыдущий материал, то понимаете, что более эффективным решением станет именно первая видеокарта.

В целом, для расчёта пропускной способности памяти и производительности видеочипа следует воспользоваться специальной методикой. Она заключается в том, чтобы ширину шины умножить на частоту памяти. После этого полученное значение делится на 8 (обусловлено тем, что именно столько бит содержится в 1 байте). Результат расчётов и окажется нужным показателем.

Для наглядности стоит выполнить вычисления для двух моделей, сравниваемых выше. Пропускная способность первой составляет 42,7 ГБ в 1 секунду. Для второй этот показатель составляет намного меньше – 25,6 ГБ.

Как это работает и на что смотреть

Для того, чтобы получить необходимые данные из памяти, центральный процессор должен получить доступ к ячейке по определенному адресу. Оперативная память современного компьютера организована в виде страниц, то есть, фиксированных участков, размером от нескольких килобайт до нескольких мегабайт. Информация об адресах этих страниц содержится в таблицах.

Работает это так: сначала процессор делает запрос к нужной к таблице, затем к строке таблицы, и уже потом к нужному столбцу, где и получает доступ к странице с необходимыми ему данными. Память современных компьютеров исчисляется гигабайтами, а размер таблиц ограничен, поэтому используется многоуровневая структура, где таблицы группируются в специальные «каталоги».

Скорость выполнения всех этих запросов очень велика, но все-таки ограничена физическими возможностями конкретной архитектуры. Задержки возникают при выполнении практически любой операции: при обращении к столбцу или строке таблицы, при переключении между строками таблицы, между завершением одного запроса и подачей следующего и т.д. Эти задержки и называют таймингами.

Порядок, в котором указываются тайминги в маркировке, стандартен:

  1. Сначала идет латентность (CAS Latency или CL);
  2. Затем RAS to CAS Delay (tRCD);
  3. Следом RAS Precharge (tRP);
  4. И четвертый — это Active to Precharge Delay (tRAS).

Рассмотрим более более подробно, на что влияют тайминги оперативной памяти:

  • CAS Latency (CL) или латентность оперативной памяти — самый важный среди таймингов. Латентность — это задержка между моментом запроса со стороны процессора к памяти и получением этих данных.
  • RAS to CAS Delay (tRCD) — задержка между обращением к столбцу матрицы адресов страниц оперативной памяти и обращением к строке этой же матрицы.
  • RAS Precharge (tRP) — задержка между закрытием доступа к одной строке матрицы и открытием доступа к другой.
  • Active to Precharge Delay (tRAS) — Задержка, необходимая на возвращение памяти к ожиданию следующего запроса.

Помимо этого, в маркировке модуля может присутствовать такой параметр, как Command Rate (CMD). Command Rate указывает на задержку, которая произойдет с момента активации памяти до того, когда можно будет выполнить первый запрос. Обычно он указывается следом за таймингами и может иметь значение T1 или T2, что соответствует 1 или 2 тактному циклу.

AMD Phenom II/Athlon II

Последние несколько лет Intel активно экспериментирует с архитектурами своих процессоров, а вот AMD куда более консервативна.

В последние годы каждая новая процессорная архитектура от
Intel привносит какие-то новые особенности, связанные с разгоном. С AMD все иначе — алгоритм раскочегаривания этих кристаллов уже давно практически не
претерпевает изменений. Вероятно, что вместе с выходом процессоров Llano,
оснащенных встроенным графическим ядром, этой стабильности придет конец, ну а
пока что мы рассмотрим, каким образом разгоняется память, работающая в тандеме
с нынешними решениями AMD — Phenom II и Athlon II.

В качестве опорной частоты для памяти в данном случае
выступает частота системной шины (HT Clock по терминологии AMD), которая по
умолчанию равна 200 МГц. Изменение этого параметра сказывается на режиме работы
процессора, контроллера памяти (этот блок обычно обозначается как CPU NB) и
шины HyperTransport Link. По этой причине в поисках частотного потолка вашего
ОЗУ следует понизить множители для процессора и HT Link, а вот контроллер
памяти, напротив, глушить не стоит. Его частота должна быть по крайней мере в
три раза выше, чем реальная частота памяти (и, соответственно, в полтора раза
выше, чем частота эффективная), иначе стабильность системы не гарантируется.
Вместе с тем чем быстрее работает контроллер, то тем больше шансов выдавить из
модулей памяти лишние мегагерцы или понизить их тайминги. Можно даже слегка
задрать напряжение CPU NB, чтобы достичь лучшего результата, но сильно
увлекаться не стоит.

Следует отметить, что на платформах AMD память разгоняется
хуже, чем на платформах Intel и, как правило, отметку в 2000 МГц оверклокерам
покорить не удается. Таким образом, покупать для такой системы сверхбыстрые планки
DDR3 нет особого смысла. Учтите, что режимы работы до DDR3-1600 МГц
включительно можно активировать изменением множителя, однако при дальнейшем
разгоне в любом случае придется мучить тактовый генератор.

Как правильно разогнать оперативную память

Вопреки выше написанному, процесс не особенно сложен. Есть два вида разгона ОЗУ: ручной и автоматический.

Разгон вручную

Вручную RAM настраивается с помощью настроек в BIOS или UEFI во вкладке RAM -> Settings -> Memory или аналогичной (зависит от производителя). Разгон включает в себя перестановку таймингов, то есть вышеупомянутые параметры CL, RCD и Ras Precharge. Чтобы разблокировать возможность их настройки, нужно переключиться на ручную настройку (manual).

При повышении последующих параметров полезно использовать следующее уравнение: CL+RCD+RAS = tRAS. Однако это не правило, и с приобретением опыта лучше поэкспериментировать. Стоит опускать каждый параметр отдельно, и каждый раз включать программу для проверки стабильности

Это чрезвычайно важно, потому что только так получится определить оптимальную производительность

Разгон может проходить через:

  1. Сокращение таймингов – таким образом, доступ к данным быстрее, что очень полезно при выполнении сложных вычислений.
  2. Увеличение таймингов – таким образом увеличивается тайминг, который окажется полезным в играх.

Изменить тактовую частоту с помощью опции DRAM Clock. Значение по умолчанию стоит увеличить на несколько МГц, а затем проверить стабильность памяти с помощью Memtest. В тот момент, когда система перестает работать должным образом, стоит поднять напряжение в DRAM Voltage.

Например, DDR4 чаще всего имеет напряжение 1,2В. При разгоне нужно его повысить, от 1,35В до 1,5В – это безопасные значения. В самом начале стоит установить напряжение на 10 % выше номинального, и на этом основании проверить возможности разгона.

Автоматический разгон (XMP)

Чтобы пользователь не мучился с настройками в БИОСе, компания Intel создала специальную функцию – XMP. Ее поддерживают ряд материнских плат, поэтому если она имеется – лучше воспользоваться этой функцией. Вот небольшая инструкция:

Запустить BIOS. Перейти к настройкам под названием AI Overclock Tuner. В раскрывающемся списке выбрать опцию XMP. Затем ниже появится еще один флажок XMP, где нужно выбрать одни из доступных профилей работы памяти. После загрузки профиля соответствующие настройки изменятся, однако при этом стоит проверить значения задержки и вольтажа. Если вышеуказанные параметры установлены правильно, нужно сохранить настройки, выйти из UEFI и дождаться перезагрузки компьютера

После входа в операционную систему важно проверить стабильность работы памяти специальным приложением

Если система не загружается или во время теста компьютер зависает, или перезагружается, это означает, что материнская плата и память не станут работать вместе с такими настройками. Нужно заново зайти в BIOS и выбрать другой профиль XMP.

Результаты тестирования

По умолчанию Avexir Core DDR4 работает на частоте  2400 МГц с напряжением питания 1,2 В и таймингами 16-16-16-36. В пару кликов нам удалось увеличить рабочую частоту памяти до 2800 МГц.

Тайминги остались прежними, а напряжение при этом возросло до 1,4 В. Давайте посмотрим, что нам дал разгон памяти на примере бенчмарка Geekbench.

Результаты разгона оперативной памяти Avexir Core DDR4

Номинальное значение Разгон Прирост, %
Частота памяти 2400 МГц 2800 МГц 16,6
Однопоточная производительность, баллы 3930 4035 2,7
Многопоточная производительность, баллы 8323 8478 1,8

Подробные результаты тестов:

  • Номинальное значение
  • Разгон

В результате разгона скорость работы оперативной памяти возросла почти на 17%, при этом однопоточная производительность увеличилась почти на 3% а многопоточная — на 2%. Как видим, прирост производительности не пропорционален приросту рабочих частот памяти, но, тем не менее он есть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector