Как можно использовать блок питания от компьютера

Выходы

Все блоки питания поставляются с длинными пучками проводов, торчащими сзади. Количество проводов и доступных разъёмов для запитывания устройств будут отличаться от модели к модели, но некоторые стандартные подключения должны обеспечивать все БП без исключения.

Так как напряжение – это величина разности потенциалов, то каждый выход подразумевает два провода: один для указанного напряжения (например, +12 В) и провод, относительно которого измеряется разность потенциалов. Этот провод называется заземлением, «землёй», «reference wire» или «общим» проводом, и два этих провода образуют петлю: от блока питания до устройства-потребителя, а затем обратно в БП.

Поскольку в некоторых таких замкнутых контурах токи небольшие, они могут использовать общие провода заземления.

Официальное фото блока питания Cooler Master.

Главным из обязательных разъёмов является 24-pin ATX12V v. 2.4, обеспечивающий основное питание с помощью нескольких выводов различных напряжений, а также имеющий ряд специальных выводов.

Из этих специальных отметим лишь вывод «+5 standby» – дежурное питание компьютера. Это напряжение подаётся на материнскую плату всегда, даже когда компьютер выключен, при условии, что он остаётся включен в розетку и его БП исправен. Дежурное питание нужно материнской плате для того, чтобы оставаться активной.

Большинство PSU также имеют дополнительный 8-pin разъём для материнской платы с двумя линиями +12 В, и по крайней мере один 6 или 8-pin разъём питания для PCI Express.

Со слота PCI Express видеокарты могут взять максимум 75 Вт, поэтому этот разъем обеспечивает дополнительную мощность для современных GPU.

Конкретно наш рассматриваемый блок питания по соображениям экономии фактически использует два разъема питания PCI Express на одной и той же линии. Поэтому, если у вас действительно мощная видеокарта, старайтесь выделить ей независимую линию питания, не делите её с другими устройствами.

Разница между 6 и 8-pin разъемами PCI Express – два дополнительных провода заземления. Это позволяет повысить силу тока, удовлетворяя потребности наиболее прожорливых видеокарт.

Последние несколько лет мы всё чаще стали замечать блоки питания с гордой припиской «модульный» (modular PSU). Это просто означает, что у них отстегивающиеся кабели, что позволяет использовать только необходимое количество кабелей и разъёмов, не подключая всё ненужное, освободив тем самым пространство внутри блока.

Источник фотографии nix.ru

Наш Cooler Master, как и большинство, использует довольно простую систему подключения модульных кабелей.

Каждый разъем имеет по одному проводу +12В, +5В и +3,3В, а также два провода заземления, и в зависимости от того, к какому устройству будет подключен кабель, разъем на другом конце будет использовать либо соответствующую, либо упрощённую распайку.

Представленный на фото выше разъем Serial ATA (SATA) используется для подключения питания жестких дисков, твердотельных накопителей и таких периферийных устройств, как DVD-приводы.

Этот всем знакомый разъём называется замысловато: «разъём питания AMP MATE-N-LOK 1-480424-0». Но все называют его просто Molex, невзирая на то, что это всего лишь название компании-разработчика этого разъёма. Он предоставляет по одному выводу +12В и +5В, и два провода заземления.

На выходных проводах производители тоже могут сэкономить или накрутить цену за счет более ярких или более мягких проводов. Сечение провода также играет важную роль, поскольку более толстые провода обладают меньшим сопротивлением, чем тонкие, поэтому меньше греются при прохождении тока по ним.

Примечания

Комментарии
  1. Однако в мощных трансформаторных БП возникают импульсные помехи из-за того, что ток, протекающий через (и вторичную обмотку трасформатора) имеет форму коротких импульсов, потому что диод открыт не весь полупериод, а короткое время вблизи максимума синусоиды, когда мгновенное значение переменного напряжения на вторичной обмотке превышает постоянное напряжение на фильтрующей ёмкости).
Источники
  1. Вторичный источник электропитания//Силовая электроника: краткий энциклопедический словарь терминов и определений —М.:Издательский дом МЭИ, 2008
  2. Здесь имеется в виду средняя индукция в контуре, охватывающем виток. В однородном магнитном поле, вектор индукции которого перпендикулярен плоскости витка — просто величина индукции.
  3. ↑ .
  4. .

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Общие рекомендации по ремонту блока питания телевизора

Итак, пошаговая инструкция ремонт импульсного блока питания:

  1. Включаем телевизор, убеждаемся, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в блоке питания. На всякий случай надо будет проверить напряжение питания строчной развертки.
  2. Выключаем телевизор, разбираем его.
  3. Проводим внешний осмотр платы телевизора, особенно участка, где размещен блок питания. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и другое. Надо будет в дальнейшем проверить их.
  4. Внимательно смотрим пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.
  5. Проверяем цепь питания: прозваниваем шнур питания, предохранитель, выключатель питания (если он есть), дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предохранитель не сгорает — просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.
  6. Проверяем остальные детали блока — диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.
  7. Смотрим, нет ли замыканий во вторичных цепях питания — для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.

Включаем. На этом этапе возможны три варианта:

  1. Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку — для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150–160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим. В некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть) или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.
  2. Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что импульсный блок питания не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280–300 Вольт. Если его нет — иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено, может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.
  3. Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните — чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.

Устройство и принцип работы

Коротко опишем принцип работы компьютерного блока питания

На вход подается питание 220 V / 50 Гц (в идеальном случае). В противном случае работает фильтр (1) который убирает пульсации и помехи сети. После питание подается на инвертор сетевого напряжения (2), который увеличивает частоту с 50 Гц до 100 Кгц и выше. Благодаря чему имеется возможность использовать дешевые трансформаторы (3) малых габаритов. Этот трансформатор благодаря высокой частоте может передать огромную мощность при преобразовании высоковольтного напряжения в низковольтное. Рядом с основным трансформатором располагается так же трансформатор дежурного напряжения. Последнее присутствует всегда при подаче питания к блоку. Далее в работу вступают диодные сборки (5), которые вместе с конденсаторами и дросселями сглаживают высокочастотные пульсации и выдают постоянные напряжения подающиеся непосредственно компонентам компьютера.

Основной дроссель групповой стабилизации (6). Применяется в блоках питания среднего ценового диапазона и отвечает за стабилизацию всех выходных напряжений. Если нагрузка на одном из каналов резко увеличивается — напряжение проседает. При такой схеме блок питания повышает напряжения сразу на всех линиях. Качественные, дорогие блоки питания, имеют полностью независимые линии питания, благодаря чему этого эффекта не возникает.

Схема управления частотой вращения вентилятора (7). Позволяет регулировать обороты «карлсона». Так же присутствует плата контроля напряжения и  потребляемого тока. Она отвечает за защиту блока от коротких замыканий и перегрузки.

Блоки питания высокого уровня преимущественно изготавливают с модульным подключением кабелей. В этом случае присутствует плата с силовыми разъемами (8) куда непосредственно подключаются провода.

Модульное подключение позволяет использовать только необходимые кабеля. В  следствии чего возможно добиться более качественного распределения кабелей в корпусе, что в свою очередь положительно скажется на .

Задачи вторичного источника электропитания

  • Обеспечение передачи мощности — источник электропитания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
  • Преобразование формы напряжения — преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
  • Преобразование величины напряжения — как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины, для питания различных цепей.
  • Стабилизация — напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и так далее. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.
  • Защита — напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
  • Гальваническая развязка цепей — одна из мер защиты от протекания тока по неверному пути.
  • Регулировка — в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
  • Управление — может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
  • Контроль — отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (например, в России — 240 В 50 Гц, в США — 120 В 60 Гц).

Две наиболее типичных конструкции — это трансформаторные и импульсные источники питания.

Что такое блок питания

Блок питания – это какой-либо узел радиоэлектронного устройства, который обеспечивает необходимым питанием какое-либо устройство. Все вы знаете, что для работы радиоэлектронных устройств нужно питание, которые они получают извне. То есть все радиоэлектронные устройства так или иначе потребляют электрический ток. Каждому радиоэлектронному устройству требуется конкретное напряжение и мощность, поэтому, блоки питания “заточены” именно под конкретное устройство. Именно поэтому встречается огромное множество различных блоков питания и для каждого устройства оно свое.

⇡#Вторичная цепь

Вторичная цепь – это все, что находится после вторичной обмотки трансформатора. В большинстве современных блоков питания трансформатор имеет две обмотки: с одной из них снимается напряжение 12 В, с другой – 5 В. Ток сначала выпрямляется с помощью сборки из двух диодов Шоттки – одной или нескольких на шину (на самой высоконагруженной шине – 12 В — в мощных БП бывает четыре сборки). Более эффективными с точки зрения КПД являются синхронные выпрямители, в которых вместо диодов используются полевые транзисторы. Но это прерогатива по-настоящему продвинутых и дорогих БП, претендующих на сертификат 80 PLUS Platinum.

Шина 3,3 В, как правило, выводится от той же обмотки, что и шина 5 В, только напряжение понижается с помощью насыщаемого дросселя (Mag Amp). Специальная обмотка на трансформаторе под напряжение 3,3 В – экзотический вариант. Из отрицательных напряжений в текущем стандарте ATX осталось только -12 В, которое снимается со вторичной обмотки под шину 12 В через отдельные слаботочные диоды.

ШИМ-управление ключом преобразователя изменяет напряжение на первичной обмотке трансформатора, а следовательно – на всех вторичных обмотках сразу. При этом потребление тока компьютером отнюдь не равномерно распределено между шинами БП. В современном железе наиболее нагруженной шиной является 12-В.

Для раздельной стабилизации напряжений на разных шинах требуются дополнительные меры. Классический способ подразумевает использование дросселя групповой стабилизации. Три основные шины пропущены через его обмотки, и в результате если на одной шине увеличивается ток, то на других – падает напряжение

Допустим, на шине 12 В возрос ток, и, чтобы предотвратить падение напряжения, ШИМ-контроллер уменьшил скважность импульсов ключевых транзисторов. В результате на шине 5 В напряжение могло бы выйти за допустимые рамки, но было подавлено дросселем групповой стабилизации

Напряжение на шине 3,3 В дополнительно регулируется еще одним насыщаемым дросселем.

Стабилизирующие дроссели и выходной фильтр (Antec VP700P)

В более совершенном варианте обеспечивается раздельная стабилизация шин 5 и 12 В за счет насыщаемых дросселей, но сейчас эта конструкция в дорогих качественных БП уступила место преобразователям DC-DC. В последнем случае трансформатор имеет единственную вторичную обмотку с напряжением 12 В, а напряжения 5 В и 3,3 В получаются благодаря преобразователям постоянного тока. Такой способ наиболее благоприятен для стабильности напряжений.

Преобразователь DC-DC для шины 5 В (CoolerMaster G650M)

Выходной фильтр

Финальной стадией на каждой шине является фильтр, который сглаживает пульсации напряжения, вызываемые ключевыми транзисторами. Кроме того, во вторичную цепь БП в той или иной мере пробиваются пульсации входного выпрямителя, чья частота равна удвоенной частоте питающей электросети.

В состав фильтра пульсаций входит дроссель и конденсаторы большой емкости. Для качественных блоков питания характерна емкость не менее 2 000 мкФ, но у производителей дешевых моделей есть резерв для экономии, когда устанавливают конденсаторы, к примеру, вдвое меньшего номинала, что неизбежно отражается на амплитуде пульсаций.

Импульсный трансформатор: принцип действия и функциональные особенности

Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.

Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.

Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.

Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.

Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.

Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.

Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:

  1. Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях. С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
  2. Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
  3. В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь. Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.

Характеристики блоков питания

Мощность — это основной параметр, который должен совпадать с
суммарной мощностью, потребляемой всеми комплектующими ПК, а при
нормальном выборе она должна превышать это значение минимум на 100 Вт.
При несоблюдении данного условия во время пиковой нагрузки компьютер
может перезагружаться или блок питания сгорит, а с ним и ряд деталей
гаджета.

И последнее, на что стоит обратить внимание перед покупкой — это вес
БП. Качественный блок питания не может весить меньше 2 кг., ведь это
может свидетельствовать о том, что производитель сэкономил на
комплектующих

Выгодную покупку такого прибора поможет сделать ресурс сравнения цен Прайс.юа, где можно найти самые актуальные предложения.

Батарея и мощность

От АКБ зависит и пригодность преобразователя для той или иной цели. Повышающий инвертор напряжения не берет энергию для потребителей из «темной материи» Вселенной, черных дыр, духа святого или откуда-то еще просто так. Только – из АКБ. А от нее он возьмет мощность, отдаваемую потребителям, деленную на КПД самого преобразователя.

Автолюбители знают: гонял стартер 20 мин – покупай новый аккумулятор. Правда, в новых машинах есть ограничители времени его работы, так что, возможно, и не знают. И точно не все знают, что стартер легковушки, раскрутившись, берет ток ок. 75 А (в течение 0,1-0,2 с при запуске – до 600 А). Простейший расчет – и выходит, что, если в инверторе нет автоматики, ограничивающей разряд батареи, то наша за 15 мин сядет полностью. Так что выбирайте или конструируйте свой преобразователь с учетом возможностей наличной АКБ.

Ресурс кислотных АКБ заметно не уменьшается, если они разряжаются 2-х часовым током (12 А для 60 А/ч, 24 А для 120 А/ч и 42 А для 210 А/ч). С учетом КПД преобразования это дает допустимую долговременную мощность нагрузки в прим. 120 Вт, 230 Вт и 400 Вт соотв. Для 10 мин. нагрузки (напр., для запитки электроинструмента) она может быть увеличена в 2,5 раза, но после этого АБК должна отдохнуть не менее 20 мин.

В целом итог получается не совсем уж плохой. Из обычного бытового электроинструмента только болгарка может брать 1000-1300 Вт. Остальные, как правило, обходятся мощностью до 400 Вт, а шуруповерты до 250 Вт. Холодильник от АКБ 12 В 60 А/ч через инвертор проработает 1,5-5 час; вполне достаточно, чтобы принять необходимые меры. Поэтому делать преобразователь на 1кВт для батареи 60 А/ч смысл имеет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector